Popis výsledku Sada dílčích 3D modelů nezbytných pro konstrukci finálního 3D modelu vlivů poddolování na povrch a 3D modelu nejist (pro lokalitu Mariánské Technická zpráva

Autoři:

Grygar, R. – Staněk, F. – Brejcha, M. – Jelínek, J. –

Kryl, J. – Šanderová, J.

Označení výsledku ISTA:

SS02030023-V38

Rock Environment Natural Resources

Projekt č. "SS02030023 Horninové prostředí a suroviny" je spolufinancován se státní podporou Technologické agentury ČR v rámci Programu Prostředí pro život.

Т

Č

Α

R

www.tacr.cz

Obsah

1.	ÚVOD	6
2. LC	ZÁKLADNÍ GEOLOGIE A REGIONÁLNĚ GEOLOGICKÁ POZICE DKALITY MARIÁNSKÉ RADČICE	8
3.	3D STRUKTURNĚ-GEOLOGICKÝ MODEL	12
3	3.1. Revize, verifikace a korekce vstupních archivních dat	12
	 3.1.1 Grid povrchu před hlubinnou těžbou 3.1.2 Identifikace průběhu zlomu Victoria v horizontech 10, 9 a 3 	16
3	3.2 Výpočet a vizualizace prostorové lokalizace vstupních dat	18
	3.2.1 Vytvoření gridů horizontů 10, 9 a 3 vhodnou interpolační metodou	18
3	3.3 Konstrukce 3D strukturně geologického modelu	21
3	3.4 Vizualizace strukturně geologického modelu ve 3D	23
4. PO 5.	3D DIGITÁLNÍ MODEL RELIÉFU 5. GENERACE (DMR5) A JEHO PROVNÁNÍ S DEM K ROKU 1950 3D LANDSCAPE MODEL	31 36
6.	3D MODEL DŮLNÍCH DĚL A PODZEMNÍCH PROSTOR	41
ŧ	5.1 Historie hlubinné těžby v katastru obce Mariánské Radčice	41
e	5.2 3D model s vizualizací důlních děl a podzemních prostor	43
7.	TECHNICKÉ PARAMETRY VÝSLEDKU	49
8.	EKONOMICKÉ PARAMETRY VÝSLEDKU	50
9.	ZÁVĚR	51
Lit	eratura	52

Seznam tabulek

Tabulka 3-1: Ukázka souboru 3.pbd	12
Tabulka 3-2: Ukázka souboru <i>3.xlsx</i>	13
Tabulka 3-3: Ukázka souboru Horizonty.xlsm	13
Tabulka 3-4: Ukázka kontrol souboru <i>Horizonty.xlsm</i>	14
Tabulka 3-5: Ukázka tabulky vrtů	15
Tabulka 3-6: Souřadnice obvodového polygonu vymezeného území v souboru	
Obvod.bln	16
Tabulka 3-7: Souřadnice zlomu Victoria v horizontu 3 v souboru Fault_3.bln	17
Tabulka 3-7: Souřadnice zlomu Victoria v horizontu 3 v souboru <i>Fault_3.bln.</i> Tabulka 3-8: Typy hornin a kódy vrstev.	17 19
Tabulka 3-7: Souřadnice zlomu Victoria v horizontu 3 v souboru <i>Fault_3.bln.</i> Tabulka 3-8: Typy hornin a kódy vrstev. Tabulka 3-9: Údaje v souboru <i>Profily s uhlím.xlsm.</i>	17 19 19
Tabulka 3-7: Souřadnice zlomu Victoria v horizontu 3 v souboru <i>Fault_3.bln.</i> Tabulka 3-8: Typy hornin a kódy vrstev. Tabulka 3-9: Údaje v souboru <i>Profily s uhlím.xlsm.</i> Tabulka 3-10: Údaje v souboru <i>1.xlsx.</i>	17 19 19 20

Seznam obrázků

Obr. 1-1 Pozice polygonu (červený obdélník) pilotní lokality Mariánské Radčice v předpolí Dolu Bílina na podkladu digitálního modelu reljefu DMR5 a topografické
Základní mapy české republiky
Obr. 2-1 Mapa polohy mostecké pánye v oherském riftu. Upraveno podle [5]
Obr. 2-2 Schematický geologický řez Mosteckou pányí [6]
Obr 3-1: Průběhu zlomu Victoria pro 3. horizont (zeleně, jeho část uvnitř území
červeně)
Obr. 3-2: Zadání parametrů interpolace pro horizont 3
Obr. 3-3: Dělící horizonty vrstev
Obr. 3-4: Schéma vstupů a výstupů makra Geol model 3D
Obr. 3-5: Detail situace zlomu Victoria na podkladu báze vrstvy 2 (těžené uhlí).
Fialovou barvou je zobrazen polygon Uzemi zlomu Victoria.bln, modře je zobrazen
polygon výskytu tektonického porušení pro vrstvu 2 (těžené uhlí) a zeleně je zobrazen
polygon výskytu tektonického porušení pro vrstvu 3 (uhelná série) 21
Obr. 3-6: Zadání vstupních parametrů a tlačítko ke spuštění makra
Obr. 3-7: Vizualizace geomodelu v prostředí <i>Voxler</i> (vstupní soubor <i>GM_3D_grid.dat</i>).
Obr. 3-8: Nastavení vlastností interního 3D gridu typů hornin <i>Gridder GM</i>
Obr 3-9. Vizualizace strukturně geologického modelu s pomocí grafického výstupu
ScatterPlot
Obr. 3-10: Vizualizace zlomu Victoria s pomocí grafického výstupu <i>ScatterPlot</i> 26
Obr 3-11: Vizualizace strukturně geologického modelu s pomocí grafického výstupu
FaceRender
Obr. 3-12: Vizualizace řezu $X=500$ m strukturně geologického modelu s pomocí
grafického výstupu <i>FaceRender</i>
Obr. 3-13: Vizualizace strukturně geologického modelu s pomocí grafického výstupu
VolRender
Obr. 3-14: Vizualizace řezu X=-700 m od středu strukturně geologického modelu s
pomocí grafického výstupu <i>ClipPlane</i> a <i>FaceRender</i>
Obr. 3-15: Vizualizace strukturně geologického modelu s pomocí řezů - grafických
výstupů OrthoImage_XY, OrthoImage_XZ a OrthoImage_YZ
Obr. 3-16: Vizualizace strukturně geologického modelu s pomocí grafického výstupu
Isosurface
Obr. 3-17: Vizualizace řezu X=-500 m od středu strukturně geologického modelu s
pomocí grafického výstupu <i>ClipPlane</i> a <i>Isosurface</i>
Obr. 4-1 Digitální model terénu DMR 5G pro širší oblast mostecké pánve. Výškopisně
kolorovaný stínový reliéf (shaded relief) se sítí vodotečí. Polygon pilotní lokality
Mariánské Radčice v předpolí porubní fronty Doly Bílina je vyznačen červenou barvou.
Cerchovaně je znázorněna státní hranice s Německem
Obr. 4-2 Digitální model terénu z roku 1950 DEM1950 pro širší oblast mostecké pánve. Výškopisně kolorovaný stínový reliéf (shaded relief) se sítí vodotečí. Polygon pilotní

lokality Mariánské Radčice v předpolí porubní fronty Doly Bílina je vyznačen červenou barvou Čerchovaně je znázorněna státní branice s Německem
Obr. 4-3 Porovnání 3D modelů terénu DMR 5G a DEM1950 pro širší oblast Mostecké pánve. Postupné přechody do žlutočervených odstínů znamenají záporné rozdíly, tedy
poddolovaná a povrchově vytěžená území. Obdobně pak přechody modrofialových
Mariánské Radčice v předpolí porubní frontv Dolv Bílina je vyznačen červenou barvou.
Čerchovaně je znázorněna státní hranice s Německem
Obr. 4-4 Detail porovnání 3D modelů terénu DMR 5G a DEM1950 pro pilotní polygon Mariánské Radčice. Legenda pozitivních a negativních rozdílů obou reliéfů je stejná jako po obr. 4.3
Jako na 001. 4-3
dokumentace pro tvorbu 3D modelu
Obr. 5-2 Celkový pohled na Landscape model Mariánské Radčice – pohled od východu.
Obr. 5-3 Landscape model Mariánské Radčice – pohled od jihu
Obr. 5-4 Landscape model Mariánské Radčice – pohled z obce směrem na Braňany 39
Obr. 5-5 Pohled na Landscape model Mariánské Radčice – východní okraj obce 40
Obr. 5-6 Prostředí software Infraworks
Obr. 6-1 Schéma konstrukce geologického-báňského modelu [3] 44
Obr. 6-2 Celkový pohled na 3D model dobývek a horizontálních důlních děl – pohled
od jihovýchodu
Obr. 6-3 Detailní pohled na dílčí model hlubinné dobývky vytvořené prostřednictvím objektu SOLID
Obr. 6-4 Struktura objektu SOLID reprezentující vodorovné důlní dílo
Obr. 6-5 Prostředí aplikace Grid File Utilities s aplikací programového makra
Obr. 6-6 3D model dobývky ve formě 3D gridů
Obr. 6-7 Rozdílový model reliéfu terénu mezi lety 1950-2020 reprezentovaný formou
hypsometrie. Srovnej s obr. 4-3 a především s obr. 4-4

1. ÚVOD

Při řešení reálného ovlivnění povrchu v důsledku poddolování je nezbytné pracovat s 3D komplexními modely, které spojují informace o geologické stavbě (3D strukturně-geologický model) s možnostmi vlivu těžby (3D model důlních děl atd.). Tyto prostorové informace jsou nutné pro moderní územní plánování.

Podstata projektu RENS [7] "Poddolovaná území" spočívá ve vytvoření metodiky zpracování všech dostupných podkladů pro vytvoření komplexního 3D modelu, který je podstatným vstupem pro tvorbu tzv. CIM (City Information Modeling). CIM jako rozvíjející se obor, je zásadní pro rozvoj městských aglomerací. Jeho přidanou hodnotou je, že jde nad rámec většiny současných modelů a souborů BIM (Building Information Modeling), zahrnuje infrastrukturní stavby a vymezení ochranných pásem ve vazbě na povrchovou situaci staveb.

V roce 2022 byla, jako první plánovaný výsledek dílčího projektu RENS, dokončena "Sada dílčích 3D modelů nezbytných pro konstrukci finálního 3D modelu vlivů poddolování na povrch a 3D modelu nejistot" pro první pilotní lokalitu Mariánské Radčice (lokalizace viz obr. 1.1). Tuto sadu tvoří následující dílčí samostatné 3D modely (odkazy na stažení těchto čtyřech 3D modelů ve formátu *3D pdf* pro prohlížení v programu Adobe Reader jsou v části 7.TECHNICKÉ PARAMETRY VÝSLEDKU):

- 1. 3D strukturně-geologický model,
- 3D digitální model reliéfu 5. generace (DMR5) a jeho porovnání s DEM k roku 1950,
- 3. 3D Landscape model,
- 4. 3D model důlních děl a podzemních prostor.

Tyto dílčí modely budou uplatněny jako výchozí vstupy pro další práce na finálním 3D komplexním modelu vlivů poddolování na povrch a 3D modelu míry nejistoty strukturně geologického modelu. Na základě těchto modelů bude následně v další etapě řešení projektu RENS zpracována Certifikovaná metodika pro tvorbu komplexního 3D modelu vlivů poddolování na povrch, který bude relevantním vstupem pro City Information Modeling.

Prezentované 4 dílčí výstupy sice reprezentují samostatné 3D modely, jakožto nezbytné postupné kroky komplexního metodického řešení projektu pro vytvoření finálního 3D modelu vlivu poddolování na povrch v historickém dobývacím prostoru lokality Mariánské Radčice, nicméně současně je každý dílčí model (včetně metodického popisu jeho tvorby) samostatnou entitou, dostatečně reprezentující geologickou, geomorfologickou (DMR, včetně antropogenních objektů, viz Landscape model) i báňskou situaci dané modelové lokality Mariánské Radčice.

Obr. 1-1 Pozice polygonu (červený obdélník) pilotní lokality Mariánské Radčice v předpolí Dolu Bílina na podkladu digitálního modelu reliéfu DMR5 a topografické Základní mapy české republiky.

2. ZÁKLADNÍ GEOLOGIE A REGIONÁLNĚ GEOLOGICKÁ POZICE LOKALITY MARIÁNSKÉ RADČICE

Jak je zřejmé z obr. 1-1, lokalita Mariánské Radčice vystupuje v rámci Mostecké dílčí pánve, která je součástí Severočeských pánví [1,2,4,5]. Jde o systém, resp. soustavou několika samostatných, tektonicky založených depresí, v rámci výrazné regionální tektonické struktury oherského riftu, vzájemně oddělených příčnými, většinou sz.-jv. orientovanými hřbety krystalinika v podloží těchto pánví, případně tělesy terciérních vulkanitů. Jsou sledovatelné z okolí Markredwidtz v Německu až do okolí Žitavy. Na našem státním území zahrnují chebskou, sokolovskou, mosteckou a žitavskou pánev (zasahuje na našem území u pouze u Hrádku nad Nisou). Nedílnou součástí pánví jsou vulkanity Doupovských hor a Českého středohoří (viz obr. 2-1), které místy zastupují pánevní sedimenty ve značných mocnostech.

Obr. 2-1 Mapa polohy mostecké pánve v oherském riftu. Upraveno podle [5].

Současný rozsah, zejména tzv. podkrušnohorských pánví, byl patrně původně větší. Rozsah mostecké pánve byl později modifikován mladšími tektonickými

pohyby na podkrušnohorském a střezovském zlomu, podle nichž výplň pánve zaklesla, a v okrajových částech byly její sedimenty, podle těchto zlomů, značně deformovány, a proto se pod značnými úhly sklánějí směrem do centra pánve. (viz obr. 2-2).

Obr. 2-2 Schematický geologický řez Mosteckou pánví [6].

Při posuzování paleogeografických poměrů oblasti dnešního oherského riftu je potřeba mít na zřeteli, že v terciéru neexistovala struktura asymetrické vyzdvižené hrástě Krušných hor tak, jak ji známe dnes. Velmi výrazná geomorfologická struktura krušnohorského zlomu, podél níž došlo ke kontrastní vertikální diferenciaci oherského riftu a Krušných hor se vyvíjela v zásadě postsedimentárně.

Severočeské pánve neboli také podkrušnohorské pánve, byly založeny během staršího terciéru v tektonicky oslabené zóně v blízkosti staré variské sutury mezi tepelsko-barrandienskou oblastí a saxothuringikem, které spolu s permokarbonským a jejich křídovým pokryvem tvoří nejčastější podloží mostecké pánve. Varisky zformovaná kůra zde byla ztenčena extenzí v předpolí alpského orogenu natolik, že se obnovila komunikace se svrchním pláštěm a podél tektonických li-

nií vsv.-zjz. směru začala pronikat alkalická magmata, srovnatelná s vulkanickými asociacemi recentních riftů. Průniku magmat předcházel pokles křehké části kůry, která vyvrcholila během hlavní riftové fáze mezi cca 43 -16 Ma, tj. od eocénu do miocénu, a uložením až 700 m mocných říčních a jezerních klastik s uhelnými slojemi, prokládanými místy polohami efuzivních vulkanitů nebo vulkanoklastických hornin. Sedimentace pak ještě pokračovala v pliocénu, v chebské pánvi, oživením pohybů v tzv. chebsko-domažlickém příkopu, geneticky spojeným s linií mariánsko-lázeňského zlomu, který je mj. seismicky aktivní až do recentu.

Vývoj dílčích pánví je možno, podle charakteru stáří sedimentů, dominujícího prostředí sedimentace, přítomnosti vulkanismu a řídícího tektonického režimu rozdělit do tří etap: předriftového, synriftového a poriftového stádia.

Během předriftového stádia vývoje se ukládaly v depresích stále poměrně nerovného reliéfu, bazální, převážně říční sedimenty, pestrobarevné písky, jíly a splachové sedimenty starosedelského souvrství eocénního stáří. Tyto sedimenty byly často před sedimentací mladších souvrství erodovány, ale na jejich původně velké rozšíření ukazují nálezy jejich reliktů pod vulkanity i v širším okolí současných pánví.

Druhá synriftová fáze začala po delším přerušení sedimentace během oligocénu a trvala až do spodního miocénu. Během této hlavní riftové fáze vrcholí vulkanická aktivita uložením střezovského souvrství a jeho ekvivalentů v pánvích chebské, sokolovské a žitavské. Výlevy vulkanitů a ukládání pyroklastik doprovázela sedimentace říčních, bažinných a jezerních sedimentů (písků, jílů) s uhelnými slojemi, které místy dosahují mocnosti až desítek metrů (mosteckého souvrství v mostecké pánvi). Jezerní jílovce (cyprisové souvrství) v chebské a sokolovské pánvi dosahuje až 200 m mocnosti.

V mostecké pánvi je mocnost jezerních sedimentů a bažinných sedimentů ještě vyšší. Ve svrchní části v nadloží hlavní hnědouhelné sloje (mocnost 10-30 m, výjimečně až 50 m) dosahuje až 350 m. Do největší mostecké pánve ústily dva velké toky, které odvodňovaly rozsáhlé území centrálních Čech. V místě jejich ústí vznikly velké písčité laloky bílinské a žatecké delty. Tyto delty zatlačovaly a přerušovaly uhelnou i jílovitou sedimentaci jezerní pánve [6]. Tvorba uhelných slojí

se proto v pozdějších fázích vývoje pánve soustředila jen na s. okraj mostecké pánve v okolí Lomu a Litvínova.

Samotná mostecká pánev (dříve též Severočeská hnědouhelná pánev), v níž je situována i naše pilotní lokalita Mariánské Radčic, je třetihorní pánví, která byla založena v oligocénu [4,5]. Hlavní fáze vyplňování pánve a vlastní uhlotvorby spadá do období spodního miocénu (stáří 22-17 mln. let). Podloží pánevní výplně je proto složeno staršími jednotkami, především proterozoickými rulami a žulo-rulami, permokarbonskými vulkanity a sladkovodními sedimenty, křídovými mořskými sedimenty a oligocenními vulkanity případně sedimenty.

Zásoby hnědého uhlí jsou soustředěny v hlavní uhelné sloji, mocné kolem 30 m, která je souvislá na většině plochy Mostecké pánve s výjimkou neuhelné části tzv. žatecké delty [6].

3. 3D STRUKTURNĚ-GEOLOGICKÝ MODEL

Metodické kroky tvorby a vizualizace 3D modelu ložiska uhlí Mariánské Radčice na sebe navazují. Ke konstrukci vlastního 3D modelu ložiska a jeho vizualizaci byly využity komerční softwary *Surfer* [8] a *Voxler* [9]. Pro zpracování bylo taktéž nezbytné vyvinout vlastní software. Použité algoritmy zpracování údajů a vytvořený software jsou detailně popsány ve stejnojmenných podkapitolách:

- 3.1 Revize, verifikace a korekce vstupních dat.
- 3.2 Výpočet a vizualizace prostorové lokalizace vstupních dat.
- 3.3 Konstrukce 3D strukturně geologického modelu.
- 3.4 Vizualizace strukturně geologického modelu ve 3D.

3.1. Revize, verifikace a korekce vstupních archivních dat

Z geobáze SD Most byla převzata data s rozhraními geologického modelu sloje území v okolí Mariánských Radčic ve formátu DMT Atlas. Abychom z nich mohli převzít potřebné informace, byly součástí dat také textové soubory s údaji jednotlivých horizontů (3-24) modelu sloje v původním stavu před poklesy způsobenými hlubinnou těžbou ve struktuře:

- Název informačního bodu (vrtu),
- souřadnice X,
- souřadnice Y a
- souřadnice Z.

V tabulce 3-1 je ukázka souboru 3.pbd.

Tabulka 3-1: Ukázka souboru 3.pbd.

		•••		
KZ46	788896.410	983161.950	18.840 p:	16
KZ47	788853.460	983037.550	4.070 p:	16
KZ48	789035.380	983173.720	19.420 p:	8
LB10	788593.700	983306.460	11.150 p:	16
LB11	788625.160	983391.800	40.830 p:	16
LB12	788194.410	983031.530	-37.480 p:	16
LB14	787502.500	983495.600	15.320 p:	16

Soubory *3.pbd* až *24.pbd* byly převedeny do formátu *xlsx* (*3.xlsx* až *24.xlsx*). V tabulce 3-2 je ukázka souboru *3.xlsx*.

Х	Y	Z	Název	X_krov	Y_krov
-788896.41	-983161.95	18.84	KZ46	788896.410	983161.950
-788853.46	-983037.55	4.07	KZ47	788853.460	983037.550
-789035.38	-983173.72	19.42	KZ48	789035.380	983173.720
-788593.7	-983306.46	11.15	LB10	788593.700	983306.460
-788625.16	-983391.8	40.83	LB11	788625.160	983391.800
-788194.41	-983031.53	-37.48	LB12	788194.410	983031.530
-787502.5	-983495.6	15.32	LB14	787502.500	983495.600

Tabulka 3-2: Ukázka souboru 3.x/sx.

Soubory 3.xlsx až 24.xlsx byly sehrány do jednoho souboru *Horizonty.xlsm* (přidán sloupec *Horizont* – 3 až 24) a řádky byly setříděny podle 1. názvu a 2. horizont (3 až 24). Celkem je v něm 3804 řádků s údaji. V tabulce 3-3 je ukázka souboru *Horizonty.xlsm*.

st	Mocnos	Horizont	Název	Z	Y	Х
		18	LB238	-51.32	-980966.88	 -787201.75
		3	LB24	6.87	-981857.55	-787290.52
4		4	LB24	2.87	-981857.55	-787290.52
1		5	LB24	1.87	-981857.55	-787290.52
1		6	LB24	0.87	-981857.55	-787290.52
4		7	LB24	-3.13	-981857.55	-787290.52
1		8	LB24	-4.13	-981857.55	-787290.52
1		9	LB24	-5.13	-981857.55	-787290.52
.1	1	10	LB24	-16.13	-981857.55	-787290.52
2		11	LB24	-18.13	-981857.55	-787290.52
2		12	LB24	-20.13	-981857.55	-787290.52
3		13	LB24	-23.13	-981857.55	-787290.52
0		14	LB24	-23.13	-981857.55	-787290.52
2		15	LB24	-25.13	-981857.55	-787290.52
. 5	3.	16	LB24	-28.63	-981857.55	-787290.52
21	1.2	17	LB24	-29.84	-981857.55	-787290.52
.2	8.1	18	LB24	-37.96	-981857.55	-787290.52
37	6.3	19	LB24	-44.33	-981857.55	-787290.52
. 8	1.	20	LB24	-46.13	-981857.55	-787290.52
12	3.4	21	LB24	-49.55	-981857.55	-787290.52
56	1.6	22	LB24	-51.21	-981857.55	-787290.52
0		23	LB24	-51.21	-981857.55	-787290.52
0		24	LB24	-51.21	-981857.55	-787290.52
		3	LB242	-34.82	-981110.82	-787282.83
0		4	LB242	-34.82	-981110.82	-787282.83

Tabulka 3-3: Ukázka souboru Horizonty.xlsm.

V Horizonty.xlsm bylo vytvořeno makro Kontrola navaznosti, které provádí:

• Dopočet mocnosti vrstev mezi následujícími horizonty.

Kontrolu u stejného názvu – aby byly stejné souřadnice (pokud ne, tak zeleně podbarveno LB481 – viz ukázka v tabulce 3-4) a zároveň aby šla Z dolů (pokud ne, tak modře podbarvena záporná mocnost – viz ukázka v tabulce 3-4).

Х	Y	Ζ	Název	Horizont	Mocnost
		11 000		1.0	
-787355.6	-983706.68	11.098	LB481	19	
-787355.6	-983706.68	8.864	LB481	20	2.234
-787352.325	-983706.976	4.314	LB481	23	4.55
-787352.214	-983706.412	2.646	LB481	24	1.668
-787282.83	-981110.82	-34.82	LB242	9	0
-787282.83	-981110.82	-34.65	LB242	10	-0.17
-787282.83	-981110.82	-34.65	LB242	11	0

Tabulka 3-4: Ukázka kontrol souboru Horizonty.xlsm.

V *Horizonty.xlsm* bylo vytvořeno další makro *Vytvor_collars*, které vytvoří tabulku vrtů jako vstup pro vizualizaci vrtů ve *Voxleru* a další zpracování. Makro vytváří sloupce:

- ID název vrtu,
- *Easting* souřadnice *X*,
- *Northing* souřadnice *Y*,
- *Azimuth*: 0,
- *Dip*: -90 (kolmý vrt směrem dolů),
- *Z_báze* kóta nejnižšího horizontu vrtu,
- Nejnižší horizont číslo nejnižšího horizontu vrtu.

Tabulka je makrem $Z_vrtu_z_grd_povrchu$ s využitím objektů programu *Surfer* doplněna o kótu ústí vrtu (sloupec *Elevation*) na základě gridu povrchu z roku 1950 (viz níže soubor 1950_upr.grd). Toto makro doplní také hloubku vrtu *Depth* jako rozdíl hodnot *Elevation* a $Z_báze$. Ukázka tabulky vrtů je zobrazena v tabulce 3-5. Žlutě jsou podbarveny vrty, ke kterým jsme získali kreslené profily (především pro kontrolu převzatých dat – viz dále). Oranžově jsou podbarveny vrty, ke kterým jsme nezískali kreslené profily (a nemohli jsme tak provést kontrolu převzatých dat). Vrty bez podbarvení jsou mimo vymezenou oblast zpracování.

								Nejnizsi
ID	Easting	Northing	Elevation	Azimuth	Dip	Depth	Z_báze	horizont
К-1	-788809.00	-981100.00	271.05	0	-90	373.69	-102.64	24
К-2	-788714.50	-981836.00	262.35	0	-90	396.68	-134.33	24
K-2A	-788657.50	-981814.90	260.28	0	-90	398.87	-138.59	24
К-З	-788827.50	-982776.80	271.10	0	-90	351.66	-80.56	24
KO6/57	-788891.38	-983294.67	268.00	0	-90	248.20	19.80	24
KZ18	-788989.80	-983178.40	268.53	0	-90	305.00	-36.47	24
KZ21	-788437.77	-983504.59		0	-90		25.05	24
KZ24	-789036.39	-983033.06		0	-90		-60.44	24
KZ25	-788789.42	-983025.76	269.33	0	-90	321.01	-51.68	24
KZ41	-789129.47	-983495.65		0	-90		69.19	24
KZ46	-788896.41	-983161.95	268.99	0	-90	304.65	-35.66	24
KZ47	-788853.46	-983037.55	269.59	0	-90	277.10	-7.51	9
KZ48	-789035.38	-983173.72		0	-90		-41.73	24
LB10	-788593.70	-983306.46	267.48	0	-90	302.10	-34.62	24
LB103	-787900.23	-983001.39	271.75	0	-90	379.84	-108.09	24
LB106	-787994.29	-983310.14	274.04	0	-90	341.87	-67.83	24
LB11	-788625.16	-983391.80	266.99	0	-90	258.80	8.19	24
LB114	-788278.93	-983072.95	272.86	0	-90	368.77	-95.91	24
LB117	-788192.71	-983188.46	272.72	0	-90	355.90	-83.18	24
LB12	-788194.41	-983031.53	274.51	0	-90	375.63	-101.12	24

Tabulka 3-5: Ukázka tabulky vrtů.

Z informací od Severočeské dolů a.s. vyplynulo následující:

- 1. Údaje v *.*pbd* (3.*pbd*, 4.*pbd*, ..., 24.*pbd*) jsou v původním stavu před poklesy způsobenými hlubinnou těžbou.
- Horizonty 3 (strop uhelných poloh) až 10 (báze střední lávky) byly postiženy hlubinnou těžbou.
- Hlubináři těžili uhlí pouze mezi horizonty 9 a 10 (nad nimi se projevují poklesy).
- 4. Jediný zlom ve vybraném území vlevo dole je Victoria.
- 5. Žádný jiný významný zlom v tomto území není.
- Jiné vrtné profily, než které nám předali SD Most (žlutě podbarvené v tabulce 5), nejsou k dispozici – při tvorbě modelu využívali databázi Mostecké uhelné společnosti (psané profily nejsou – oranžově podbarvené v tabulce 3-5).

Z toho pro tvorbu původního strukturně-geologického modelu před hlubinnou těžbou v zadaném území (viz *Obvod.bln* v tabulce 3-6) vyplynul další postup zpracování:

1. Použít grid povrchu původní (před těžbou) z roku 1950: 1950_MMM.grd.

- 2. Identifikovat a určit vektory průběhu zlomu Victoria pomocí *bln* souborů v horizontech 10, 9 a 3.
- 3. Vytvořit gridy horizontů 10, 9 a 3 vhodnou interpolační metodou, přitom respektovat zlom Victoria.
- 4. Rozlišovat vrstvy podloží (pod horizontem 10), těžené uhlí (mezi horizonty 10 a 9), uhelnou sérii (mezi horizonty 9 a 3), nadloží (mezi horizontem 3 a kvartérem) a kvartér (jeho grid mocnosti se získá z údajů z dostupných archivních profilů vrtů).

Tabulka 3-6: Souřadnice obvodového polygonu vymezeného území v souboru *Obvod.bln*.

5,1 -789000,-983500 -787000,-983500 -787000,-981000 -789000,-981000 -789000,-983500

Vzhledem k potřebné detailnosti modelu na straně jedné a výpočetním kapacitním možnostem na straně druhé, bylo určeno rozlišení 5*5 m pro 2D gridy a 5*5*1 m pro 3D gridy.

3.1.1 Grid povrchu před hlubinnou těžbou

K dispozici byl soubor *1950_MMM.grd* povrchu, který pokrývá širší území a je v jiném rozlišení než 5*5 m. Proto byl upraven na potřebné parametry (v území *Obvod.bln* a rozlišení 5*5 m) a uložen pod názvem *1950_upr.grd*.

3.1.2 Identifikace průběhu zlomu Victoria v horizontech 10, 9 a 3

Hodnoty Z souřadnic horizontů 10, 9 a 3 (soubory *10.xlsx*, *9.xlsx* a *3.xlsx*) byly postupně vykresleny ve formě *Post map* v prostředí *Surfer*. Spolu se znalostmi o průběhu zlomu Victoria v této oblasti byly podkladem pro vytvoření vektoru průběhu zlomu Victoria v souborech *Fault_10.bln*, *Fault_9.bln* a *Fault_3.bln* (viz tabulka 3-7) a jejich variantách *Fault_10_uvnitr.bln*, *Fault_9_uvnitr.bln* a *Fault_3_uvnitr.bln* uvnitř polygonu území vymezeném souborem *Obvod.bln*. Detail situace zlomu Victoria na podkladu báze vrstvy 2 (těžené uhlí) je na obr. 3-5. Pokud by se v modelovaném území vyskytlo více zlomů, zapíší se podobným způsobem jako 2., 3., ... v pořadí. Na obr. 3-1 je zobrazen průběh zlomu Victoria pro 3. horizont.

Obr. 3-1: Průběhu zlomu Victoria pro 3. horizont (zeleně, jeho část uvnitř území červeně).

3.2 Výpočet a vizualizace prostorové lokalizace vstupních dat

3.2.1 Vytvoření gridů horizontů 10, 9 a 3 vhodnou interpolační metodou

Pro interpolaci Z gridů horizontů metodou inverzních vzdáleností s respektováním zadaných zlomů bylo vytvořeno makro *Vytvoř_grid_z_údajů_vrstvy* (soubor *Interpolace vrstvy.xlsm*) s využitím objektů programu *Surfer*. Zadání parametrů interpolace je v souboru *Interpolace vrstvy.xlsm*, pro horizont 3 je nastavení parametrů výpočtu na obr. 3-2. Nejprve bylo ale provedeno testování vhodného nastavení parametrů interpolace (*Power, Smooth, Max data tu use, Min data, Radius*). Na základě výsledků testování byly jako nejvhodnější pro danou lokalitu vybrány parametry uvedené na obr. 3-2.

	Α	B	D D	E	F	G H	I J	K L	М
1	1919	ČESKA GEOLO SLUŽE	á OGICKÁ BA	Mak	ro pro i	nterpolaci	vrstvy		
2	Provádí p	ostupné genero	vání gridu báze	vrstvy na základ	ě vstupního sou	ıboru *.xlsx			
3	Oh e se á se								
4	Obecne p	arametry vypoct	u:		, , , , , , , , , , , , , , , , , , , ,				The second secon
6	ID VISLVY						Spust mak	ro	-
7	Použít při	gridování zlomy	(Ano/Ne):		Ano	Vytvoř	grid z úda	aiů vrstvy	
8						• • • • • •	_5114_2_444	aja_vistvy	
9	Makro	Vytvoř_grid_	z_údajů_vrs	tvy					
10	Vstupy:	ID.xlsx, ve ktere	ém jsou vybrány	vstupní údaje p	oro gridování vrs	stvy ID (F5)			
11		Fault_ID.bln - h	lavní zlomy pro	gridování					
12									
13									
14	Výstup:	ID_zlom.grd							_
15	- ·	· •.							
16	Parametr	vypoctu:							
10	Smooth				3				
19	Max data	to use			20				
20	Min data	io use			1				
21	Radius				1000	m			
22	X_min				-789000				
23	X_max				-787000				
24	Y_min				-983500				
25	Y_max				-981000				
26	n_gridx				401				
27	n_gridy				501				
28	© Franțič	ok Stančk, 2022							
29	enantis	ek Juanek, 2022							

Obr. 3-2: Zadání parametrů interpolace pro horizont 3.

Na základě takto vzniklých gridů horizontů (3_zlom.grd, 9_zlom.grd a 10_zlom.grd) byly zjištěny chyby ve vstupních datech (například vyšší Z u horizontu 10 ve srovnání s horizontem 9 ve vrtu LB242 nebo neexistující horizont 10 ve vrtu MR5, i když horizonty 9 a 11 existují...). Všechny zjištěné chyby byly

opraveny a vytvoření gridů *3_zlom.grd*, *9_zlom.grd* a *10_zlom.grd* proběhlo znovu již s opravenými vstupními údaji. Zobrazení gridu horizontu 3 je na obr. 3-1.

3.2.2 Typy hornin

V modelech se budou rozlišovat typy hornin ve vrstvách uvedené v tabulce 3-8.

Kód vrstvy	Typ horniny
5	Kvartér – Vrstva mezi bází kvartéru (viz níže) a povrchem.
4	Nadloží - Vrstva mezi horizontem 3 a bází kvartéru.
3	Uhelná série - Vrstva mezi horizonty 9 a 3.
2	Těžené uhlí - Vrstva mezi horizonty 10 a 9.
1	Podloží - Vrstva pod horizontem 10.

Tabulka 3-8: Typy hornin a kódy vrstev.

Gridy povrchu a horizontů 3, 9 a 10 již byly vytvořeny (viz 3.2.1). Zbývá ještě vytvořit grid báze kvartéru. Vstupní data můžeme získat pouze z archivních profilů vrtů, které jsou dostupné. Z dostupných archivních profilů vrtů byly zapsány údaje *ID*, *From*, *To* a *Hornina* do souboru *Profily s uhlím.xlsm*. Ukázka části těchto údajů je v tabulce 9.

Tabulka 3-9: Údaje v souboru *Profily* s uhlím.xlsm.

ID	From	То	Hornina
LB2	0	1.25	qh
LB2	1.25	293.5	j
LB2	293.5	296.08	up
LB2	296.08	318	u
LB2	318	330	up
LB2	330	335	j
KZ18	0	4.2	qh
KZ18	4.2	256.7	j
KZ18	256.7	259	up
KZ18	259	280	u
KZ18	280	306	up
KZ18	306	308	j
KZ18	308	308.5	znelec
KZ46	0	3	qh
KZ46	3	264	j

Makrem *Mocnost_kvarter* byly vybrány pouze údaje o hloubce kvartéru jednotlivých vrtů (hornina "qh") a makrem *Dopln_XY* byly doplněny souřadnice vr-

tů. Výsledné údaje byly překopírovány do souboru *1.xlsx* (tabulka 3-10), který je vstupním souborem pro gridování mocnosti kvartéru.

Х	Y	Z	Název
-787907.49	-983097.03	1.25	LB2
-788989.8	-983178.4	4.2	KZ18
-788896.41	-983161.95	3	KZ46
-788853.46	-983037.55	3.5	KZ47
-788625.16	-983391.8	0.4	LB11
-788194.41	-983031.53	3.15	LB12
-788067.03	-983370.18	0.3	LB18
-788376.25	-982898.6	2	LB29
-787895.32	-982939.99	0.4	LB56

Tabulka 3-10: Údaje v souboru *1.xlsx*.

Grid mocnosti kvartéru (*Mocnost_Vrstva_1.grd*) byl vytvořen makrem *Vy-tvoř_grid_z_údajů_vrstvy* (viz obr. 3-2) se zadáním parametru *ID vrstvy* 1 a *Použít při gridování zlomy (Ano/Ne): Ne.* Odečtením *Mocnost_Vrstva_1.grd* od 1950_upr.grd vznikne grid báze kvartéru *Baze_kvarteru.grd*.

Na obr. 3-3 jsou zobrazeny všechny dělící horizonty vrstev uvedených v tabulce 3-8. Odshora dolů povrch, báze kvartéru, horizont 3, horizont 9 a horizont 10.

Obr. 3-3: Dělící horizonty vrstev.

Pro další zpracování byly gridy dělících horizontů vrstev uvedených v tabulce 8 přejmenovány na Hor_*.grd, kde * označuje pořadí horizontu (5 - povrch, 4 báze kvartéru, 3 - strop uhelných poloh, 2 - strop těženého uhlí, 1 - báze těženého uhlí).

3.3 Konstrukce 3D strukturně geologického modelu

Makro *Geol_model_3D* realizuje tvorbu 3D gridu geologického modelu. Schéma vstupů a výstupů makra, které je naprogramováno v jazyce VBA, je na obr. 3-4. Tento program využívá objekty Surferu, proto je nezbytné, aby byl na provádějícím počítači nainstalován program Surfer firmy Golden Software.

Obr. 3-4: Schéma vstupů a výstupů makra *Geol_model_3D*.

Protože se linie zlomu v horizontech 3, 9 a 10 posunuje, což způsobuje nepřesnosti při vizualizaci, byly gridy *Hor_3.grd*, *Hor_2.grd* a *Hor_1.grd* dělících horizontů vrstev v oblasti tektonického porušení zlomu Victoria vyblankovány (byla zde stanovena *NoData value* 1.70141e+038) uvnitř polygonu *Uzemi zlomu Victoria.bln* (obr. 3-5).

Obr. 3-5: Detail situace zlomu Victoria na podkladu báze vrstvy 2 (těžené uhlí). Fialovou barvou je zobrazen polygon *Uzemi_zlomu_Victoria.bln*, modře je zobrazen polygon výskytu tektonického porušení pro vrstvu 2 (těžené uhlí) a zeleně je zobrazen polygon výskytu tektonického porušení pro vrstvu 3 (uhelná série). Strukturně geologický model ve formě 3D gridu se tvoří postupně makrem $Geol_model_3D$ (obr. 3-6) ve všech bodech 2D gridů dělících horizontů (mimo body s hodnotou *NoData value* 1.70141e+038) v síti 5*5 m podle zadaného kroku (1 m) a dalších zadaných parametrů od podloží směrem vzhůru. Přitom se do výstupního textového souboru $GM_3D_grid.dat$ zapisuje:

- souřadnice *X*,
- souřadnice *Y*,
- souřadnice *Z*,
- kód typu hornin (5 kvartér mezi horizonty 1 a 2, 4 nadloží mezi horizonty 2 a 3, 3 uhelná série mezi horizonty 3 a 4, 2 těžené uhlí mezi horizonty 4 a 5, 1 podloží pod horizontem 5)
- tektonika (hodnota +10 ke kódu typu horniny v polygonech výskytu tektonik ve vrstvách 3 a 2 – viz obr. 3-5), jinak kód typu hornin.

	А	B C D E F G	Н	1	J	К	L	М	Ν	
	Est GEDLOG	ČESKÁ GEOLOGICKÁ SLUŽBA GEOLOGICKÁ) - vytv odelu a a te	vořen a mír aktor	ní 3D y neji viky	gridu stoty	strul typů	kturne horn	é in	
1			u		iii x y					
2	Vstupy:	Hor_*.grd - gridy Z horizontů: 5 - povrch, 4 - báze kvartéru,								ſ
3		3 - strop uhelných poloh (Mach 3), 2 - strop těženého uhlí (Mach 9)	, 1 - báze těže	eného uhlí	(Mach 10)					
4		Tekt_*.dat - obvodové polygony tektonik v typu horniny *: 5 - kvartér mezi ho	rizonty 4 a 5,	4 - nadloží	mezi horizo	nty 3 a 4,	Sp	usť ma	kro	
5		3 - uhelná série mezi horizonty 2 a 3, 2 - těžené uhlí mezi horizonty	1 a 2, 1 - pod	lloží pod ho	orizontem 1				1.20	
6		Pokud v typu horniny X není tektonika určena, pak Tekt_X.dat neex	istuje.				Geol	_moae	el_3D	L
7										L
8	Výstup:	GM_3D_grid.dat - soubor 3D gridu geomodelu hodnot typů hornin, tektoniky a	míry nejistot	y typů hor	nin a tektor	iky				
9										
10	Obecné pa	arametry výpočtu:								
11	Počet hori	zontů (typů základních hornin 1, 2,):	5							
12	Začátek ná	ázvu gridů Z horizontů (Hor_*.grd, kde * je pořadí horizontu):						Hor_		
13	Název slož	íky s gridy Z horizontů a obvodovými polygony tektonik:		C:\čgs\Pc	oddolovani	Mar_Radci	ce_model\	Horiz_Tekt		
14	Krok Z 3D	modelu (m):	1							
15	Mocnost p	podloži (pod poslednim horizontem) a nadloži (nad hornim horizontem modelu),	které budou :	zahrnuto d	o modelu (r	n):		3		
16	Cislo horn	iho horizontu zahrnuteho do modelu:	3							
1/	Začátek ná	azvu obvodových polygonů tektoník v typu horniny * (Tekt_*.dat, kde * je typ zá	kladni hornin	y):				Tekt_		
18	Polomer V	yniedavaci kružnice (m) zony pro stanoveni nejistoty nornin na dané urovni XY:								
19	vzualenos	it ve smeru z (m) zony pro stanoveni nejistoty nornin na dane urovni XY:	2							
20	Pocet typi	a nornin pro stanoveni nejistoty nornin:	5		Coult Xnov	2 02 2022	16.44.22			
21					spusieno:	22.02.2022,	17.49.50			
22	© FrantiX	k Sterräk 2022			okonceno:	22.02.2022	, 17.48:38			
23		ek stanek, zuzz								

Obr. 3-6: Zadání vstupních parametrů a tlačítko ke spuštění makra.

Ukázka části výstupního souboru *GM_3D_grid.dat* je v tabulce 3-11. Tento soubor lze přímo načíst do prostředí programu *Voxler* (případně *Move* [10]) pro provedení různých způsobů vizualizace strukturně geologického modelu a nejistot způsobenou typy hornin nebo tektonikou ve 3D.

Jestliže se bude vytvářet více variant modelu s různými parametry, je nutno soubor $GM_3D_{grid.dat}$ přejmenovat (například do názvu souboru doplnit hodnoty parametrů a/nebo datum), neboť při dalším spuštění by se původní soubor $GM_3D_{grid.dat}$ přepsal.

-788075	-983500	57	4	4	
-788070	-983500	30	1	1	
-788070	-983500	31	1	1	
-788070	-983500	32	1	1	
-788070	-983500	33	2	12	
-788070	-983500	34	2	12	
-788070	-983500	35	2	12	
-788070	-983500	36	2	12	
-788070	-983500	37	2	12	
-788070	-983500	38	2	12	
-788070	-983500	39	2	12	
-788070	-983500	40	2	12	
-788070	-983500	41	2	12	
-788070	-983500	42	2	12	
-788070	-983500	43	2	12	
-788070	-983500	44	2	12	
-788070	-983500	45	2	12	
-788070	-983500	46	2	12	
-788070	-983500	47	2	12	
-788070	-983500	48	3	13	
-788070	-983500	49	3	13	
-788070	-983500	50	3	13	
-788070	-983500	51	3	13	
-788070	-983500	52	3	13	
-788070	-983500	53	3	13	
-788070	-983500	54	4	4	
-788070	-983500	55	4	4	
-788070	-983500	56	4	4	
-788065	-983500	30	1	1	

Tabulka 3-11: Ukázka obsahu souboru GM_3D_	_grid.dat.
--	------------

3.4 Vizualizace strukturně geologického modelu ve 3D

Hodnoty 3D gridu strukturně geologického modelu vypočtené makrem *Geol_model_3D* obsažené v souboru *GM_3D_grid.dat* lze různým způsobem vizualizovat v prostředí programu *Voxler* firmy Golden Software. Situace po načtení souboru *GM_3D_grid.dat* do prostředí *Voxleru* a po vytvoření objektů pro vizualizaci je na obr. 3-7. Vlevo je seznam všech vytvořených objektů, výběrem kterých se zvolí typ zobrazení a druh zobrazované veličiny. Dále jsou uvedeny příklady některých možných způsobů zobrazení geomodelu.

Obr. 3-7: Vizualizace geomodelu v prostředí Voxler (vstupní soubor GM_3D_grid.dat).

Vizualizace s pomocí grafického výstupu *ScatterPlot* se dají provádět přímo ze vstupního souboru (*GM_3D_grid.dat*). Vizualizace s pomocí grafických výstupů *FaceRender*, *VolRender*, *OrthoImage* a *Isosurface* vyžadují nejprve vytvoření interního 3D gridu *Voxleru* s pomocí modulu *Gridder* (objekt *Gridder GM* na obr. 3-7). Na obr. 3-8 je nastavení vlastností interního 3D gridu typů hornin *Gridder GM*.

Property Manager ×	Property Manager	×	Property Manager		×
Auto Update Update Now ?	Auto Update Up	date Now ?	🗹 Auto Update	Update Now	?
General Geometry Search	General Geometry Sea	arch	General Geometry	Search	
Gridder GM (id:8)	Geometry		Search		
Input GM_3D_grid_22_2_22_all.dat	X Limits	(-789000, -787000)	Search type	Simple	\sim
Input points 6340679	X min	-789000	Radius	0.1	
Input component Column D: Typ_hor 🗸	X max	-787000	Min count	1	*
Data dependent param Recalculate	Y Limits	(-983500, -981000)	Max count	1	-
Action Begin Gridding	Y min	-983500			
Method	Y max	-981000			
Method Inverse distance 🗸	Z Limits	(-93, 129)			
Anisotropy Isotropic 🗸	Z min	-93			
Power 2	Z max	129			
Smooth 0	Resolution	(401 x 501 x 223)			
	Nx	401 🗘			
	Ny	501 🜩			
	Nz	223 🗘			
	Spacing	(5, 5, 1)			
	X spacing	5			
	Y spacing	5			
	Z spacing	1			
Input The input this module is connected to.	Z spacing The spacing between nod	es in the Z direction.	Radius Radius of the search	neighborhood (in data un	iits).

Obr. 3-8: Nastavení vlastností interního 3D gridu typů hornin Gridder GM.

Vrty použité pro konstrukci strukturně geologického modelu byly pro vizualizaci rozděleny do dvou souborů:

- *collars_profily.xlsx*, vrty s větší věrohodností, ke kterým jsme měli k dispozici kreslené profily a které jsou vykreslovány červeně (obr. 3-7),
- *collars_neprofily.xlsx*, vrty s menší věrohodností, ke kterým jsme neměli k dispozici kreslené profily a které jsou vykreslovány bílou barvou (obr. 3-7).

Horizonty (*Hor_*.grd* - gridy Z horizontů: 5 - povrch, 4 - báze kvartéru, 3 - strop uhelných poloh, 2 - strop těženého uhlí, 1 - báze těženého uhlí) jsou vykresleny s pomocí grafického výstupu *HeightField* (obr. 3-7).

Na obr. 3-9 je vykreslen strukturně geologický model s pomocí grafického výstupu *ScatterPlot*. Na obr. 3-10 je vizualizace zlomu Victoria s pomocí grafického výstupu *ScatterPlot*.

Obr. 3-9: Vizualizace strukturně geologického modelu s pomocí grafického výstupu *ScatterPlot.*

Obr. 3-10: Vizualizace zlomu Victoria s pomocí grafického výstupu ScatterPlot.

Na obr. 3-11 je vykreslen strukturně geologický model s pomocí grafického výstupu *FaceRender*. Tímto grafickým výstupem lze zobrazit i řezy tělesem (obr. 3-12).

Obr. 3-11: Vizualizace strukturně geologického modelu s pomocí grafického výstupu *FaceRender*.

Obr. 3-12: Vizualizace řezu *X*=500 m strukturně geologického modelu s pomocí grafického výstupu *FaceRender*.

Na obr. 3-13 je vykreslen strukturně geologický model s pomocí grafického výstupu *VolRender*. S pomocí grafického výstupu *ClipPlane* (ten lze aplikovat na většinu grafických objektů) lze zobrazit řezy tělesem (obr. 3-14).

Obr. 3-13: Vizualizace strukturně geologického modelu s pomocí grafického výstupu *VolRender*.

Obr. 3-14: Vizualizace řezu *X*=-700 m od středu strukturně geologického modelu s pomocí grafického výstupu *ClipPlane* a *FaceRender*.

Na obr. 3-15 je vykreslen strukturně geologický model s pomocí řezů - grafických výstupů *OrthoImage_XY*, *OrthoImage_XZ* a *OrthoImage_YZ*.

Obr. 3-15: Vizualizace strukturně geologického modelu s pomocí řezů - grafických výstupů *OrthoImage_XY*, *OrthoImage_XZ* a *OrthoImage_YZ*.

Na obr. 3-16 je vykreslen strukturně geologický model s pomocí grafického výstupu *Isosurface* - obálky s mezní hodnotou 2.5 (uvnitř této obálky je tedy uhelná série, těžené uhlí a kousek podloží). Mezní hodnotu lze libovolně měnit. S pomocí grafického výstupu *ClipPlane* lze zobrazit řezy tělesem (obr. 3-17).

Obr. 3-17: Vizualizace řezu *X*=-500 m od středu strukturně geologického modelu s pomocí grafického výstupu *ClipPlane* a *Isosurface*.

3D strukturně-geologický model – Mariánské Radčice je ke stažení dostupný ve formátu *3D pdf* na adrese¹: https://rens.geology.cz/sites/default/files/2023-02/3D_strukturne-geologicky-model_Marianske_Radcice.pdf

¹ Soubor ve formátu *3D pdf* nelze otevřít přímo v okně prohlížeče kliknutím na odkaz.

Doporučený postup: Nejprve si soubor stáhněte a potom ho otevřete v programu *Adobe Reader* a označte dokument jako důvěryhodný.

4. 3D DIGITÁLNÍ MODEL RELIÉFU 5. GENERACE (DMR5) A JEHO POROVNÁNÍ S DEM K ROKU 1950

Jako jeden ze základních vstupních 3D modelů nezbytných pro tvorbu, jak Landscape 3D modelu, tak modelu poddolování a strukturně-geologického modelu, je digitální model reliéfu (DMR). Pro vytvoření základního digitálního modelu terénu aktuálního reliéfu zájmové lokality Mariánské Radčice i širší oblasti mostecké pánve byl využit digitálního model reliéfu České republiky 5. generace (DMR 5G), který představuje zobrazení přirozeného, nebo lidskou činností modifikovaného, zemského povrchu v digitálním tvaru, ve formě výšek diskrétních bodů v nepravidelné trojúhelníkové síti (TIN) bodů o souřadnicích *X*, *Y*, *Z*, kde *Z* reprezentuje nadmořskou výšku ve výškovém referenčním systému Balt po vyrovnání (Bpv) s úplnou střední chybou výšky 0,18 m v odkrytém terénu a 0,3 m v zalesněném terénu. Model vznikl z dat pořízených metodou leteckého laserového skenování výškopisu území České republiky v letech 2009 až 2013 [11].

Česká geologická služba je legitimním uživatelem tohoto modelu. Na obr. 4-1 je zobrazen digitální model terénu vytvořený v prostředí *ArcGIS Pro ESRI* na základě databáze DMR5G pro širší oblast Mostecké pánve.

Pro srovnání se situací terénu před zásadním rozmachem těžebních aktivit v zájmovém území pak byla využita databáze polohopisných a výškopisných dat z roku 1950, poskytnuta nám na základě dohody, podepsané se Sevoročeskými doly a.s. Most. Jejím zpracováním v prostředí *ArcGIS Pro ESRI* byl vytvořen digitální model "původního" terénu před intenzivním hlubinným dobýváním (digital elevation model) DEM1950 (obr. 4-2).

Následně bylo, pro stejné území Mostecké pánve, provedeno porovnání obou předchozích 3D modelů terénu s využitím analytických schopností programu *ArcGIS Pro ESRI* (obr. 4-3 a detail oblasti Mariánských Radčic na obr. 4-4)).

Obr. 4-1 Digitální model terénu DMR 5G pro širší oblast mostecké pánve. Výškopisně kolorovaný stínový reliéf (shaded relief) se sítí vodotečí. Polygon pilotní lokality Mariánské Radčice v předpolí porubní fronty Doly Bílina je vyznačen červenou barvou. Čerchovaně je znázorněna státní hranice s Německem.

Obr. 4-2 Digitální model terénu z roku 1950 DEM1950 pro širší oblast mostecké pánve. Výškopisně kolorovaný stínový reliéf (shaded relief) se sítí vodotečí. Polygon pilotní lokality Mariánské Radčice v předpolí porubní fronty Doly Bílina je vyznačen červenou barvou. Čerchovaně je znázorněna státní hranice s Německem.

Obr. 4-3 Porovnání 3D modelů terénu DMR 5G a DEM1950 pro širší oblast Mostecké pánve. Postupné přechody do žlutočervených odstínů znamenají záporné rozdíly, tedy poddolovaná a povrchově vytěžená území. Obdobně pak přechody modrofialových odstínu znamenají pozitivní rozdíly, tedy výsypky a haldy. Polygon pilotní lokality Mariánské Radčice v předpolí porubní fronty Doly Bílina je vyznačen červenou barvou. Čerchovaně je znázorněna státní hranice s Německem.

Obr. 4-4 Detail porovnání 3D modelů terénu DMR 5G a DEM1950 pro pilotní polygon Mariánské Radčice. Legenda pozitivních a negativních rozdílů obou reliéfů je stejná jako na obr. 4-3.

3D digitální model reliéfu 5. generace (DMR5) a jeho porovnání s DEM k roku 1950 – Mariánské Radčice je ke stažení dostupný ve formátu *3D pdf* na adrese¹: https://rens.geology.cz/sites/default/files/2023-02/DMR5G-a-DEM1950-Marianske_Radcice.pdf

¹ Soubor ve formátu *3D pdf* nelze otevřít přímo v okně prohlížeče kliknutím na odkaz.

Doporučený postup: Nejprve si soubor stáhněte a potom ho otevřete v programu *Adobe Reader* a označte dokument jako důvěryhodný.

5. 3D LANDSCAPE MODEL

Základní podmínkou úspěšného zpracování báňského 3D modelu, v mnoha případech již historické hlubinné těžby nerostných surovin, je získání relevantních báňských podkladů a jejich následné počítačové zpracování - digitalizace. Hlavním úskalím při jejich získávaní je skutečnost, že v průběhu času dochází často k jejich ztrátám nebo degradaci jejich analogové podoby. Ve většině případů je nutné na získání dokumentace historické hlubinné těžby vynaložit nemalé úsilí.

Pro zpracování dílčích modelů popsaných v kapitolách 5 a 6 zájmového území byly použity tyto podklady:

- Letecká ortofotomapa.
- Digitální modely terénu stav 1950 (DEM1950) a 2020 (DMR 5G).
- Skeny mapových podkladů důlně-měřické dokumentace hlubinných dobývek a důlních děl. Na obr. 5-1 je zobrazen výsek důlní mapy M 4113-2L, která byla součástí rozsáhlého souboru naskenovaných podkladů.
- Strukturně-geologický model uhelné sloje.

Pro zpracování primárních dat za účelem vytvoření dílčích modelů popsaných v kapitolách 5 a 6 byl použit software *Autodesk Civil3D*, *Autodesk Raster Design*, *Carlson Underground Mining*, *Carlson Geology* a *Autodesk Infraworks*.

Obr. 5-1 Mapový list důlně-měřické dokumentace M 4113-2L. Příklad vstupní dokumentace pro tvorbu 3D modelu.

Po zpracování digitálního modelu terénu (DMT) byla provedena revize a analýza lokality, současně s vytvořením dokumentace nadzemních objektů, jako jsou budovy, liniové stavby, vodní plochy a vegetační kryt terénu.

Základní operací pro vytvoření 3D modelu řešené lokality Mariánské Radčice byla 3D vektorová interpretace modelovaných objektů. Jedním z nezbytných podkladů byla letecká ortofotomapa a katastrální mapa v měřítku 1:1000.

Zpracování jednotlivých dílčích modelů bylo realizováno v programových systémech *AutoCAD* a *3D Studio MAX*. Tyto dílčí modely byly zapracovány do celkové 3D Landscape scény vytvořené v softwarovém prostředí *Autodesk Infraworks*. V tomto softwaru byly vytvořeny stavební a další objekty infrastruktury a vegetace, včetně liniových staveb, jak je patrné z obr. 5-2, 5-3, 5-4 a 5-5. Ukázka práce v prostředí software *Autodesk Infraworks* je na obr. 5-6.

Koncepce takto zpracovaného modelu předpokládá následnou interpretaci modelu predikované poklesové kotliny ve 3D scéně a jeho aplikaci v rámci BIM (Building Information Model) infrastruktury v krajině.

Obr. 5-2 Celkový pohled na Landscape model Mariánské Radčice – pohled od východu.

3D Landscape model – Mariánské Radčice je ke stažení dostupný ve formátu 3D pdf na adrese¹:

https://rens.geology.cz/sites/default/files/2023-02/3DLandscape-Marianske_Radcice.pdf

¹ Soubor ve formátu *3D pdf* nelze otevřít přímo v okně prohlížeče kliknutím na odkaz.

Doporučený postup: Nejprve si soubor stáhněte a potom ho otevřete v programu *Adobe Reader* a označte dokument jako důvěryhodný.

Obr. 5-3 Landscape model Mariánské Radčice – pohled od jihu.

Obr. 5-4 Landscape model Mariánské Radčice – pohled z obce směrem na Braňany.

Obr. 5-5 Pohled na Landscape model Mariánské Radčice – východní okraj obce.

Obr. 5-6 Prostředí software Infraworks.

6. 3D MODEL DŮLNÍCH DĚL A PODZEMNÍCH PROSTOR

6.1 Historie hlubinné těžby v katastru obce Mariánské Radčice

Uzavřený Důl Kohinoor II se nachází v Ústeckém kraji, severně od města Mostu v centrální části mostecké hnědouhelné pánve u obce Mariánské Radčice. Těžební činnost spočívala v hlubinné exploataci hnědouhelného ložiska, kterou důl provozoval v dobývacím prostoru Lom II, který se rozkládá v katastrálních územích: Mariánské Radčice, Lom u Mostu, Libkovice u Mostu, Konobrže, Růžodol, Dolní Litvínov a Louka u Litvínova.

Sloučením akciových společností Gewerkschaft Brucher Kohlenwerke, jež vlastnila doly Kohinoor I (tehdy Johann Schächte), Mořic a Gutmann a Dresdner Kreditanstalt, v jejímž majetku byly doly Pluto v Louce a Pavel v Horním Litvínově, vznikly podmínky pro založení dalšího velkého dolu na území katastru obce Mariánské Radčice.

Na pozemkové parcele č. 542/2 byla ještě pod závodní správou dolu Pluto v letech 1896-1897 hloubena větrná jáma pro dolové pole dolu Pluto, původně pojmenovaná Neuanlage Maria Radschitz, po uvedení do provozu byla pak přejmenována na "Kaisergrube".

V létech 1899-1900 byla na téže parcele č. 542/2 hloubena těžní jáma o širokém profilu, která později sloužila jako fárací jáma Dolu Kohinoor. Provoz nového dolu byl započat dne 4. listopadu 1901 a byl pojmenován Kaisergrube podle původního pojmenování jámy.

V dalších letech 1902-1905 byla postavena nová kotelna, šachetní budova, elektrárna a třídírna uhlí. V roce 1907 byla vyhloubena větrná jáma v Libkovicích, která byla na povrchu v roce 1912 opatřena zakládacím zařízením na plavenou základku (písek) a zároveň spojena s pískovým lomem v Braňanech vlečkou o délce 6,43 km pro dopravu písku. V létech 1913-1915 byla v dolovém poli vyhloubena větrná jáma Mariánské Radčice a v roce 1923 doplněna základkovým zařízením.

Po první světové válce došlo k přejmenování dolů. Název Kaisergrube byl změněn a důl dostal název Jan II. V roce 1931 byl znovu přejmenován, a to na Kohinnor II.

Majetek Německorakouské důlní společnosti přešel po první světové válce na akciovou společnost Lomské uhelné závody a.s., jejíž majetek byl po okupaci revíru konfiskován a v rámci nucené arizace prodán 27. června 1940 společnosti SUBAG (Sudetoněmecká důlní akciová společnost).

V květnu 1945 byly na veškerý důlní majetek SUBAGu jmenovány národní správy a vznikly Hnědouhelné doly v severozápadních Čechách. Výměrem Ministerstva paliv ze dne 15.8.1945 byl název organizace změněn na Severočeské hnědouhelné doly v Mostě.

Na základě dekretu prezidenta republiky z října 1945 byly veškeré důlní podniky v severočeském revíru znárodněny a včleněny do národního podniku Severočeské hnědouhelné doly Most – SHD, který byl zřízen ke dni 1. ledna 1946. Po znárodnění byl důl Kohinoor II samostatným závodem národního podniku Severočeské hnědouhelné doly. Na základě nové organizace se stal dnem 1. ledna 1952 samostatným národním podnikem v rámci trustu hlubinných dolů obvodního ředitelství v Duchcově. Po zrušení trustů byl Důl Kohinoor závodem národního podniku Doly Vítězného února.

Na základě schválení investičního úkolu na rekonstrukci závodu Kohinoor II dne 1. července 1957 na S-SHD a později na MP v Praze, bylo s touto rekonstrukcí započato v roce 1960. Rekonstrukce spočívala ve vybudování celé řady nových zařízení, vyhloubení skipové jámy s oběhy vlaků v náraží, otevření IX. Pole (1. úsek), vyhloubení větrné jámy Oldřich náhradou za jámu Poseidon (ta byla v roce 1967 zasypána a zarubána), úpravě větrné jámy Venuše jako výdušné, postavení nových povrchových objektů a rekonstrukci a modernizaci objektů stávajících.

V 70-tých letech byla zahájena otvírka nového rozsáhlého revíru Východní pole, se zahájením těžby v roce 1976. V 80-tých letech byla zahájena otvírka revíru Severovýchodní pole, připravovaného pro novou technologii dobývání mocné uhelné sloje - stěnování. Tato metoda v závěru životnosti dolu postupně nahradila do té doby hlavní těžební metodu – komorování na zával v lávkách. V roce 1983 byl proražen spojovací překop Kohinoor – Pluto, účelem bylo převedení těžby z dolu Pluto na důl Kohinoor a vytěžení uhelných zásob vázaných do té doby ochranným pilířem areálu Pluto. Těžba byla převedena v dubnu 1983.

Ze stejného důvodu došlo ke spojení dolů Kohinoor a Gottwald (později důl Alexander) ražbou 2560 m dlouhého spojovacího překopu. Těžba byla z dolu Alexander na důl Kohinoor převedena v roce 1994. Od 1.1.1991 došlo ke změně názvu z bývalého DVÚZ k.p. na Doly Hlubina s. p., po založení Mostecké uhelné společnosti a.s. v roce 1993 se stal podnik Doly Hlubina s.p. divizí MUS a.s.,od roku 1994 byl začleněn do MUS a.s. V lednu 1996 se započalo s likvidací hlubinných pracovišť Dolu Alexander v Hrdlovce, která byla ukončena v roce 1997.

V rámci útlumu uhelného hornictví bylo rozhodnuto o ukončení těžby na dole Kohinoor. Pro realizaci útlumového programu byla dne 1.2.2000 ustanovena samostatná akciová společnost Důl Kohinoor a.s. jako dceřiná společnost MUS, a.s. K 1.7.2001 byl v souvislosti s uzavřením Smlouvy o prodeji části podniku mezi MUS, a.s. a Důl Kohinoor a.s. převeden do společnosti Důl Kohinoor a.s. majetek lokality Ležáky – úsek asanace, od 1.7. 2002 byl do společnosti Důl Kohinoor a.s. včleněn důl Centrum. Řádná těžba na Dole Kohinoor byla ukončena k 31.8.2002, celkem bylo vytěženo 52 319 850 tun uhlí.

6.2 3D model s vizualizací důlních děl a podzemních prostor

Výchozími podklady pro vytvoření 3D báňského modelu s vizualizací důlních děl a podzemních prostor byly naskenované a následnou transformací do závazného referenčního (souřadného) systému S-JTSK již výše uvedené mapy důlněměřické dokumentace. Dalším podkladem byla data reprezentující konstrukci geologického modelu získané od Severočeských Dolů a.s. (obr. 6-1) a 3D strukturně-geologický model (viz kapitola 3). Jednotlivé dílčí modely reprezentující geologické horizonty byly zpracovány v programovém systému *ATLAS DMT*.

Obr. 6-1 Schéma konstrukce geologického-báňského modelu [3].

Základním požadavkem na vytvoření 3D modelu důlních děl je předpokládaná metodická návaznost na výpočet vlivů poddolování na povrch. Důležitým předpokladem je vytvoření topologicky čistých vektorových objektů, v tomto případě 3D Polylines a Carlson SOLID. Dalším předpokladem je jejich budoucí napojení na BIM model krajiny a infrastruktury.

Horizontální důlní díla byla vytvořena na základě informací z vektorizovaných důlních map (obr. 6-2) a strukturně-geologického modelu. Základním stavebním prvkem byl zvolen objekt SOLID vytvořený společností Carlson Software Inc., který vykazuje vlastnosti objemového tělesa a byl vyvinut právě pro modelování podzemních prostorů (obr. 6-3). Struktura SOLID objektu reprezentující vodorovné důlní dílo je znázorněna na obr. 6-4.

Obr. 6-2 Celkový pohled na 3D model dobývek a horizontálních důlních děl – pohled od jihovýchodu.

Obr. 6-3 Detailní pohled na dílčí model hlubinné dobývky vytvořené prostřednictvím objektu SOLID.

Obr. 6-4 Struktura objektu SOLID reprezentující vodorovné důlní dílo.

Podobným způsobem byly vytvořeny i objekty dobývek, tedy ze stejných podkladů, kombinací objektů SOLID a gridových modelů (obr. 6-6) s využitím aplikace *Grid File Utilities* (obr. 6-5).

Everytion mode	- Scrint To Pup (Line: 7)
Sten-by-sten	
 Script/Expert 	A=LoadFrom(E:\MR\C1_KE'_IFK.GRD) A=0.0000; PERIM(E:\MR\dobyvka11.pln) SaveAs(A,E:\MR\OB_dobyvka11.grd)
Select Grid(s)	A=LoadFrom(E:\MR\C1_KEY_ELV.GRD) B=LoadFrom(E:\MR\OB_dobyvka11.grd)
Set Value	A=A+B SaveAs(A,E:\MR\OB_dobyvka11.grd)
Math Functions	
Comparison Functions	
Extrapolate	
Save	
Save As	
Template to insert	
Load 💌	
Insert	Progress Log
View 3D	
Find	
Print	NULL value handling Treat NULL as 0.0 if one or more inputs are non-NULL; Retain NULL if all inputs are NULL
	Start Step Reset Save Macro As Save Macro

Obr. 6-5 Prostředí aplikace Grid File Utilities s aplikací programového makra.

Obr. 6-6 3D model dobývky ve formě 3D gridů.

Porovnáním digitálních modelů terénů z roku 1950 a 2020 byl v programu *Au-todesk Civil3D* vytvořen rozdílový model. Na obr. 6-7 je interpretován ve formě hypsometrie popisující rozdíly výšek. Na první pohled je zde patrný výrazný pokles ohraničený konturou dobývky. Tento jev se zde analogicky projevuje v dalších plochách postižených hlubinnou těžbou uhlí.

Obr. 6-7 Rozdílový model reliéfu terénu mezi lety 1950-2020 reprezentovaný formou hypsometrie. Srovnej s obr. 4-3 a především s obr. 4-4.

3D model důlních děl a podzemních prostor – Mariánské Radčice je ke stažení dostupný ve formátu *3D pdf* na adrese¹: https://rens.geology.cz/sites/default/files/2023-

02/3D_model_dulnich_del_a_podzemnich_prostor-Marianske_RadciceV1.pdf

¹ Soubor ve formátu *3D pdf* nelze otevřít přímo v okně prohlížeče kliknutím na odkaz.

Doporučený postup: Nejprve si soubor stáhněte a potom ho otevřete v programu *Adobe Reader* a označte dokument jako důvěryhodný.

7. TECHNICKÉ PARAMETRY VÝSLEDKU

Výsledek představuje sadu čtyř dílčích 3D modelů nezbytných pro konstrukci finálního 3D modelu vlivů poddolování na povrch a 3D modelu nejistot lokality Mariánské Radčice. Modely jsou doprovázeny vysvětlujícím textem ve formě technické zprávy v českém jazyce. Vytvořený výstup vznikl v rámci řešení projektu TA ČR SS02030023 - Horninové prostředí a nerostné suroviny, jehož hlavním cílem je výzkum, sledování a vyhodnocování stavu horninového prostředí, přírodních zdrojů, geologických rizik a geologických informací v celé ČR a poskytování nových poznatků nejen státní správě, ale také odborné i laické veřejnosti [7]. Pomocí těchto modelů bude možné vytvořit komplexní 3D model lokality Mariánské Radčice, který se stane podstatným vstupem pro tvorbu tzv. CIM (City Information Modeling). CIM jako rozvíjející se obor, je zásadní pro plánování a rozvoj městských aglomerací. Jeho přidanou hodnotou je, že jde nad rámec většiny současných modelů a souborů BIM (Building Information Modeling), zahrnuje infrastrukturní stavby a vymezení ochranných pásem ve vazbě na povrchovou situaci staveb. Všechny čtyři 3D modely jsou dostupné ke stažení ve formátu *3D pdf* zde¹:

- **3D strukturně-geologický model Mariánské Radčice** https://rens.geology.cz/sites/default/files/2023-02/3D_strukturne-geologickymodel_Marianske_Radcice.pdf
- 3D digitální model reliéfu 5. generace (DMR5) a jeho porovnání s DEM k roku 1950 – Mariánské Radčice https://rens.geology.cz/sites/default/files/2023-02/DMR5G-a-DEM1950-Marianske_Radcice.pdf
- **3D Landscape model Mariánské Radčice** https://rens.geology.cz/sites/default/files/2023-02/3DLandscape-Marianske_Radcice.pdf
- **3D model důlních děl a podzemních prostor Mariánské Radčice** https://rens.geology.cz/sites/default/files/2023-02/3D model dulnich del a podzemnich prostor-Marianske RadciceV1.pdf

¹ Soubor ve formátu *3D pdf* nelze otevřít přímo v okně prohlížeče kliknutím na odkaz. *Doporučený postup*: Nejprve si soubor stáhněte a potom ho otevřete v programu *Adobe Reader* a označte dokument jako důvěryhodný.

8. EKONOMICKÉ PARAMETRY VÝSLEDKU

Modely slouží jako základ pro tvorbu komplexního 3D modelu lokality Mariánské Radčice, který se stane podstatným vstupem pro tvorbu tzv. CIM (City Information Modeling) v daném katastrálním území. Přesný ekonomický přínos je obtížné vyčíslit, mj. proto, že jde o modelový příklad řešení především z hlediska technického, aniž by byly specifikovány další okrajové podmínky řešení v rámci celého území intra- a extravilanu samotných Mariánských Radčic. Ekonomický přínos výsledku spočívá nicméně v možnosti provedení kategorizace (zónace) poddolovaného území na jednotlivé úseky podle dopadů hlubinné těžby na povrch, které vyplynou až z finálního 3D modelu. Následně bude možno specifikovat doporučení pro další územně-plánovací aktivity v tomto a obdobných územích v podobě certifikované metodiky, jakožto zásadního výstupu projektu.

9. ZÁVĚR

Sada dílčích 3D modelů pro lokalitu Mariánské Radčice, ovlivněnou rozsáhlou hlubinnou těžbou, jsou unikátní v tom, že specifikují jednotlivé nezbytné a postupné kroky tvorby finálního komplexního 3D modelu poddolování lokality, a to od pořízení potřebných vstupních údajů z archivní dokumentace, přes uplatnění moderních algoritmů tvorby 3D modelů ložiska, báňského modelu až po vizualizaci původního a současného terénu.

V případě zásadního strukturně-geologického 3D modelu je zde podrobně popsáno a obrazově prezentováno speciálně vytvořeného programového vybavení od zajištění kontroly vstupních dat, kompatibility použitých programů (MS Excel, Surfer, Voxler, MOVE) atd.

Literatura

- Mach, K. (1993). Korelace vrstev hlavní uhelné sloje mezi lomy Bílina, Kopisty a VČSA., Zpravodaj SHD 4/93, 31–40.
- [2] Mach, K. (2002). Anomální stavba hlavní hnědouhelné sloje v prostoru miocenní bílinské delty a její geneze. Doktorská práce Přf UK v Praze.
- [3] Mach, K. (2017). Výpočet zásob hnědého uhlí na ložisku Bílina- Lom Bílina (3 075 700) stav k 31.12.2017. Archiv OMG SD a.s., Bílina.
- [4] Malkovský, M. a kol. (1985). Geologie severočeské hnědouhelné pánve a jejího okolí. – Oblastní regionální geologie ČSR, Ústřední ústav geologický, Praha.
- [5] Pešek, J. (2010). Terciérní pánve a ložiska hnědého uhlí České republiky. Česká geologická služba, Praha, 415 str.
- [6] Rajchl, M., Uličný, D. (2005). Depositional record of an avulsive fluvial system controlled by peat compaction (Neogene, Most Basin, Czech Republic). Sedimentology, 52(3), 601-625.
- [7] "Horninové prostředí a nerostné suroviny" Internet: https://rens.geology.cz/cs, [Dec. 23, 2022].
- [8] "Surfer Explore the depths of your data." Internet: http://www.goldensoftware.com/products/surfer/features, [Dec. 23, 2022].
- [9] "Voxler Power forward into 3D visualization." Internet: http://www.goldensoftware.com/products/voxler/features, [Dec. 23, 2022].
- [10]"MOVE Suite." Internet: https://www.petex.com/products/move-suite/, [Dec. 23, 2022].
- [11]"Zeměměřický úřad." Internet: https://zememerickyurad.maps.arcgis.com,[Dec. 23, 2022].