Dokumentace výsledku Software GM_MN_SED pro tvorbu 3D modelu míry nejistoty strukturně-geologického modelu (pro lokalitu Mariánské Radčice)

Uživatelská příručka

Autoři:

Staněk, F. – Grygar, R. – Jelínek, J. –

Kryl, J. – Šanderová, J.

Označení výsledku ISTA:

SS02030023-V41

Rock Environment Natural Resources

Projekt č. "SS02030023 Horninové prostředí a suroviny" je spolufinancován se státní podporou Technologické agentury ČR v rámci **Programu Prostředí pro život**.

т

Č

Α

R

www.tacr.cz

Obsah

1. ť	ÚVOD	6
2. N STI	METODICKÝ POSTUP A ALGORITMY TVORBY A VIZUALIZAC RUKTURNĚ-GEOLOGICKÉHO MODELU LOŽISKA	E 3D
2	 2.1 Revize, verifikace a korekce vstupních dat 2.1.1 Grid povrchu před hlubinnou těžbou 2.1.2 Identifikace průběhu zlomu Victoria v horizontech 10, 9 a 3 	8 12 12
2	 2.2 Výpočet a vizualizace prostorové lokalizace vstupních dat 2.2.1 Vytvoření gridů horizontů 10, 9 a 3 vhodnou interpolační metodou 2.2.2 Typy hornin 	14 14 15
2	2.3 Konstrukce 3D strukturně geologického modelu	17
2	2.4 Vizualizace strukturně geologického modelu ve 3D	19
MC 3	ODELU MÍRY NEJISTOTY STRUKTURNĚ-GEOLOGICKÉHO MO 3.1. Výpočet nejistoty hranic horninových těles a nejistoty průběhu zlomů 3.1.1 Způsob stanovení nejistoty hranic horninových těles 3.1.2 Způsob stanovení nejistoty průběhu zlomů 3.1.3 Popis makra Geol_model_3D	DELU27 28 28 29 30
3 b	 3.2. Výpočet obecné nejistoty, snížení nejistoty v okolí vrtů a sloučení hodnot různých druh bodech 3D gridu strukturně-geologického modelu 3.2.1 Způsob dopočtu obecné nejistoty a snížení nejistoty v okolí vrtů 3.2.2 Způsob sloučení hodnot různých druhů nejistot 3.2.3 Popis makra Nejistota_Obec_Vrty 	ů nejistot v 32 33 34 35
3	3.3 Vizualizace 3D modelu míry nejistoty strukturně-geologického modelu	40
4.	Závěr	50
Poc	děkování	51
Lit	eratura	

Seznam tabulek

Tabulka 2-1: Ukázka souboru <i>3.pbd</i>	9
Tabulka 2-2: Ukázka souboru <i>3.xlsx</i>	9
Tabulka 2-3: Ukázka souboru <i>Horizonty.xlsm</i>	9
Tabulka 2-4: Ukázka kontrol souboru <i>Horizonty.xlsm</i>	10
Tabulka 2-5: Ukázka tabulky vrtů	11
Tabulka 2-6: Souřadnice obvodového polygonu vymezeného území v souboru	
Obvod.bln	12
Tabulka 2-7: Souřadnice zlomu Victoria v horizontu 3 v souboru Fault_3.bln	13
Tabulka 2-8: Typy hornin a kódy vrstev	15
Tabulka 2-9: Údaje v souboru Profily s uhlím.xlsm	15
Tabulka 2-10: Údaje v souboru <i>1.xlsx</i>	16
Tabulka 2-11: Ukázka obsahu souboru <i>GM_3D_grid.dat</i>	19
Tabulka 3-1: Struktura souboru Polyg_obec.dat	35
Tabulka 3-2: Ukázka obsahu souboru GM 3D grid 22 2 22 all.dat	40

Seznam obrázků

Obr. 2-1: Průběhu zlomu Victoria pro 3. horizont (zeleně, jeho část uvnitř území	
červeně)	13
Obr. 2-2: Zadání parametrů interpolace pro horizont 3	14
Obr. 2-3: Dělící horizonty vrstev	16
Obr. 2-4: Schéma vstupů a výstupů makra Geol_model_3D.	17
Obr. 2-5: Detail situace zlomu Victoria na podkladu báze vrstvy 2 (těžené uhlí). Fialovou barvou je zobrazen polygon <i>Uzemi_zlomu_Victoria.bln</i> , modře je zobrazen polygon výskytu tektonického porušení pro vrstvu 2 (těžené uhlí) a zeleně je zobrazen	n 17
Obr. 2 6: Zadání vstupních porometrů a tlažítka ka spužtění makra <i>Cael model</i> 2D	10
Obr. 2-7: Vizualizace geomodelu v prostředí <i>Voxler</i> (vstupní soubor <i>GM_3D_grid.da</i>	18 <i>it</i>).
Obr. 2-8: Nastavení vlastností interního 3D gridu typů hornin Gridder GM	20
Obr. 2-9: Vizualizace strukturně geologického modelu s pomocí grafického výstupu ScatterPlot	21
Obr. 2-10: Vizualizace zlomu Victoria s pomocí grafického výstupu ScatterPlot	22
Obr. 2-11: Vizualizace strukturně geologického modelu s pomocí grafického výstupu <i>FaceRender</i>	23
Obr. 2-12: Vizualizace řezu X=500 m strukturně geologického modelu s pomocí	
grafického výstupu FaceRender	23
Obr. 2-13: Vizualizace strukturně geologického modelu s pomocí grafického výstupu	
VolRender	24
Obr. 2-14: Vizualizace řezu X=-700 m od středu strukturně geologického modelu s pomocí grafického výstupu <i>ClipPlane</i> a <i>FaceRender</i>	24
Obr. 2-15: Vizualizace strukturně geologického modelu s pomocí řezů - grafických výstupů <i>OrthoImage_XY</i> , <i>OrthoImage_XZ</i> a <i>OrthoImage_YZ</i>	25
Obr. 2-16: Vizualizace strukturně geologického modelu s pomocí grafického výstupu <i>Isosurface</i> .	25
Obr. 2-17: Vizualizace řezu X=-500 m od středu strukturně geologického modelu s	
pomocí grafického výstupu ClipPlane a Isosurface	26
Obr. 3-1: Schéma vstupů a výstupů makra Nejistota_Obec_Vrty	33
Obr. 3-2: Struktura vstupního souboru vrtů vrty_MR_nejistota.xlsx	34
Obr. 3-3: Vizualizace polygonů s jinou obecnou nejistotou <i>Polyg_obec.dat</i> ve zkušebním příkladu.	36
Obr. 3-4: Zadání parametrů a spuštění makra Nejistota_Obec_Vrty	37
Obr. 3-5: Výběr souboru vrtů **. <i>xlsx</i> použitých pro konstrukci geomodelu	38
Obr. 3-6: Výběr souboru 3D gridu hodnot typů hornin, tektoniky a míry nejistoty typů hornin a tektoniky *. <i>dat</i>	ຳ .38
Obr. 3-7: Vizualizace geomodelu a jeho nejistoty geomodelu v prostředí Voxler	
(vstupní soubor $GM_3D_grid_11_2_22_all.dat$)	42
Obr. 3-8: Vlastnosti souboru GM_3D_grid_11_2_22_all.dat.	42

Obr. 3-9: Vizualizace nejistoty typů hornin
Obr. 3-10: Vizualizace nejistoty typů hornin v řezu -800 m od středu tělesa ve směru
osy X s pomocí grafického výstupu <i>ClipPlane</i>
Obr. 3-11: Vizualizace nejistoty tektoniky 44
Obr. 3-12: Vizualizace obecné nejistoty
Obr. 3-13: Vizualizace % snížení nejistoty v okolí informačních bodů – vrtů
Obr. 3-14: Vizualizace celkové nejistoty strukturně geologického modelu
Obr. 3-15: Vizualizace celkové nejistoty strukturně geologického modelu - řez -300 m
od středu tělesa ve směru osy X s pomocí grafického výstupu ClipPlane 46
Obr. 3-16: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí
FaceRender
Obr. 3-17: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí
VolRender
Obr. 3-18: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí
<i>VolRender</i> - řez 700 m od středu tělesa ve směru osy <i>X</i> s pomocí grafického výstupu
ClipPlane
Obr. 3-19: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí
OrthoImage_XY, OrthoImage_XZ a OrthoImage_YZ
Obr. 3-20: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí
<i>Isosurface</i> - obalka s mezni hodnotou nejistoty 0.35
Obr. 3-21: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí
<i>Isosurjace</i> , obalka s mezni nodnotou nejistoty 0.35 - rez stredem telesa ve smeru osy X s
pomoci granckeno vystupu Cupriane

1. ÚVOD

Software GM_MN_SED (software pro tvorbu <u>G</u>eologického <u>M</u>odelu a jeho <u>M</u>odelu <u>N</u>ejistoty <u>SED</u>imentárních pánví) byl vytvořen s pomocí nových algoritmů založených na nových technikách pro tvorbu a vizualizaci 3D geologického modelu a 3D modelu míry nejistoty strukturně-geologického modelu pro lokality typu Mariánské Radčice. Do budoucna bude sloužit na pracovišti ČGS jako součást know-how pro výkon státní geologické služby.

Software GM_MN_SED vznikl v rámci řešení projektu TA ČR SS02030023 -Horninové prostředí a nerostné suroviny, jehož hlavním cílem je výzkum, sledování a vyhodnocování stavu horninového prostředí, přírodních zdrojů, geologických rizik a geologických informací v celé ČR a poskytování nových poznatků nejen státní správě, ale také odborné i laické veřejnosti [6]. Jednou z částí projektu je dílčí cíl 3.2. - Terénní výzkumy, vyhodnocení a aktualizace dokumentace a vymezení existence potenciálních rizik plynoucích z poddolování území. Tento dílčí cíl je dále rozdělen do dvou aktivit (3.2.1. a 3.2.2.).

Aktivita 3.2.1. se zabývá vyhodnocením výzkumů přírodních a antropogenních vlivů a vymezením a dokumentací rizik plynoucích z historického dolování ve dvou vybraných oblastech. První z nich je oblast o rozsahu cca 5 km² zahrnující intravilán obce Kaňk a bývalý dobývací prostor RD Kutná Hora (katastry Kaňk a Sedlec u Kutné Hory, okres Kutná Hora, Středočeský kraj) situovaný v. od obce. V tomto území bylo v minulosti exploatováno několik rudních pásem (od západu k východu: staročeské, skalecké, nifelské, alžbětinské, turkaňské a rejzské pásmo) s těžbou stříbrných a měděných rud a nověji zinkových a olovnato – zinkových rud s akcesorickými obsahy Ag, Au, Sb, In, Sn a dalších prvků.

Jako druhé modelové území (přibližně o stejné rozloze) byl vybrán intravilán obce Mariánské Radčice s přilehlým okolím, které zahrnuje i severozápadně od obce položený areál bývalého dolu Kohinnor (katastry Mariánské Radčice, Lom u Mostu, Libkovice u Mostu, okres Most, Ústecký kraj), s hlubinnou těžbou hnědého uhlí.

Aktivita 3.2.2. se pak pro obě vybrané oblasti zabývá vytvořením dílčích samostatných 3D modelů (1. 3D geologický model (včetně tektoniky), 2. digitální model reliéfu 5. generace včetně jeho porovnání s DEM 1950, 3. landscape model s detailizací vybraných objektů staveb a ochranných pásem, 4. 3D model s vizualizací důlních děl a podzemních prostor), které budou využity pro konstrukci komplexního 3D modelu vlivů poddolování na povrch včetně modelu nejistoty strukturně-geologického modelu, tvorbu příslušné metodiky a navazující návrh opatření. Součástí výstupů této aktivity je výstup SS02030023-V41 typu R - Software pro tvorbu 3D geologického modelu (včetně tektoniky) a 3D modelu míry nejistoty strukturně-geologického modelu. Popis výstupu SS02030023-V41 pro zpracování typu ložisek lokality Mariánské Radčice (software GM_MN_SED) je předmětem následujícího textu.

Software GM_MN_SED zahrnuje speciální programové aplikace naprogramované v prostředí MS Excel v jazyce Visual Basic for Applications (VBA) a využívá přitom objekty programů Surfer [7] firmy Golden Software.

V rámci popisu software GM_MN_SED jsou vyloženy jednotlivé kroky tvorby a vizualizace 3D geologického modelu (včetně tektoniky) a 3D modelu míry nejistoty strukturně-geologického modelu na příkladu druhé vybrané lokality Mariánských Radčic. V textu jsou také podrobně popsány jednotlivé moduly programů tvořící GM_MN_SED a také jejich ovládání. Pomocí software GM_MN_SED je zajištěna kontrola vstupních dat, kompatibilita použitých programů a generování výstupů – různých typů vizualizace ložiska a modelu nejistoty. Tyto metodické postupy spolu s nově vyvinutým programovým vybavením umožňují vytvářet variantní geologické modely a modely nejistoty ložisek tohoto a podobných typů při změně parametrů modelování.

2. METODICKÝ POSTUP A ALGORITMY TVORBY A VIZUALIZACE 3D STRUKTURNĚ-GEOLOGICKÉHO MODELU LOŽISKA

V této kapitole jsou definovány jednotlivé kroky metodického postupu tvorby a vizualizace 3D strukturně-geologického modelu ložiska na příkladu ložiska Mariánské Radčice. Tyto kroky na sebe navazují a v nich použité algoritmy zpracování údajů a vytvořený software jsou popsány ve stejně číslovaných podkapitolách:

- 2.1 Revize, verifikace a korekce vstupních dat.
- 2.2 Výpočet a vizualizace prostorové lokalizace vstupních dat.
- 2.3 Konstrukce 3D strukturně geologického modelu.
- 2.4 Vizualizace strukturně geologického modelu ve 3D.

Jednotlivé kroky metodického postupu jsou realizovány tak, aby bylo možno při libovolné změně parametrů tyto kroky programově rychle přepočítat bez nutnosti zdlouhavých ručních postupů. Proto je také možné snadno provést modelování v několika variantách (například při změně vstupních parametrů). Metodický postup je použitelný na všech ložiscích podobného typu.

2.1 Revize, verifikace a korekce vstupních dat

Z geobáze SD Most byla převzata data s rozhraními geologického modelu sloje území v okolí Mariánských Radčic ve formátu DMT Atlas. Abychom z nich mohli převzít potřebné informace, byly součástí dat také textové soubory s údaji jednotlivých horizontů (3 až 24) modelu sloje v původním stavu před poklesy způsobenými hlubinnou těžbou ve struktuře:

- Název informačního bodu (vrtu),
- souřadnice X,
- souřadnice Y a
- souřadnice Z.

V tabulce 2-1 je ukázka souboru 3.pbd.

Tabulka 2-1: Ukázka souboru 3.pbd.

KZ46	788896.410	983161.950	18.840 p: 16
KZ47	788853.460	983037.550	4.070 p: 16
KZ48	789035.380	983173.720	19.420 p: 8
LB10	788593.700	983306.460	11.150 p: 16
LB11	788625.160	983391.800	40.830 p: 16
LB12	788194.410	983031.530	-37.480 p: 16
LB14	787502.500	983495.600	15.320 p: 16

Soubory *3.pbd* až *24.pbd* byly převedeny do formátu *xlsx* (*3.xlsx* až *24.xlsx*). V tabulce 2-2 je ukázka souboru *3.xlsx*.

Tabulka 2-2: Ukázka souboru 3.x/sx.

Х	Y	Z	Název	X_krov	Y_krov
-788896.41	-983161.95	18.84	KZ46	788896.410	983161.950
-788853.46	-983037.55	4.07	KZ47	788853.460	983037.550
-789035.38	-983173.72	19.42	KZ48	789035.380	983173.720
-788593.7	-983306.46	11.15	LB10	788593.700	983306.460
-788625.16	-983391.8	40.83	LB11	788625.160	983391.800
-788194.41	-983031.53	-37.48	LB12	788194.410	983031.530
-787502.5	-983495.6	15.32	LB14	787502.500	983495.600

Soubory *3.xlsx* až *24.xlsx* byly sehrány do jednoho souboru *Horizonty.xlsm* (přidán sloupec *Horizont* – 3 až 24) a řádky byly setříděny podle 1. názvu a 2. horizont (3 až 24). Celkem je v něm 3804 řádků s údaji. V tabulce 2-3 je ukázka souboru *Horizonty.xlsm*.

Tabulka 2-3: Ukázka souboru Horizonty.xlsm.

Х	Y	Z	Název	Horizont	Mocnost
-787201.75	-980966.88	-51.32	LB238	18	
-787290.52	-981857.55	6.87	LB24	3	
-787290.52	-981857.55	2.87	LB24	4	4
-787290.52	-981857.55	1.87	LB24	5	1
-787290.52	-981857.55	0.87	LB24	6	1
-787290.52	-981857.55	-3.13	LB24	7	4
-787290.52	-981857.55	-4.13	LB24	8	1
-787290.52	-981857.55	-5.13	LB24	9	1
-787290.52	-981857.55	-16.13	LB24	10	11
-787290.52	-981857.55	-18.13	LB24	11	2
-787290.52	-981857.55	-20.13	LB24	12	2
-787290.52	-981857.55	-23.13	LB24	13	3
-787290.52	-981857.55	-23.13	LB24	14	0
-787290.52	-981857.55	-25.13	LB24	15	2
-787290.52	-981857.55	-28.63	LB24	16	3.5
-787290.52	-981857.55	-29.84	LB24	17	1.21
-787290.52	-981857.55	-37.96	LB24	18	8.12
-787290.52	-981857.55	-44.33	LB24	19	6.37
-787290.52	-981857.55	-46.13	LB24	20	1.8
-787290.52	-981857.55	-49.55	LB24	21	3.42
-787290.52	-981857.55	-51.21	LB24	22	1.66

-787290.52	-981857.55	-51.21	LB24	23	C
-787290.52	-981857.55	-51.21	LB24	24	C
-787282.83	-981110.82	-34.82	LB242	3	
-787282.83	-981110.82	-34.82	LB242	4	C

V Horizonty.xlsm bylo vytvořeno makro Kontrola navaznosti, které provádí:

- Dopočet mocnosti vrstev mezi následujícími horizonty.
- Kontrolu u stejného názvu aby byly také stejné souřadnice (pokud ne, tak zeleně podbarveno LB481 – viz ukázka v tabulce 2-4) a zároveň aby souřadnice Z klesala (pokud ne, tak se modře podbarví záporná mocnost – viz ukázka v tabulce 2-4).

Tabulka 2-4: Ukázka kontrol souboru Horizonty.xlsm.

Х	Y	Z	Název	Horizont	Mocnost
 -787355.6	-983706.68	11.098	LB481	19	
-787355.6	-983706.68	8.864	LB481	20	2.234
-787352.325	-983706.976	4.314	LB481	23	4.55
-787352.214	-983706.412	2.646	LB481	24	1.668
-787282.83	-981110.82	-34.82	LB242	9	0
-787282.83	-981110.82	-34.65	LB242	10	-0.17
-787282.83	-981110.82	-34.65	LB242	11	0

V *Horizonty.xlsm* bylo vytvořeno další makro *Vytvor_collars*, které vytvoří tabulku vrtů jako vstup pro vizualizaci vrtů ve *Voxleru* [8] a další zpracování. Makro vytváří sloupce:

- *ID* název vrtu,
- *Easting* souřadnice *X*,
- *Northing* souřadnice *Y*,
- *Azimuth*: 0,
- *Dip*: -90 (kolmý vrt směrem dolů),
- Z_báze kóta nejnižšího horizontu vrtu,
- Nejnižší horizont číslo nejnižšího horizontu vrtu.

Tabulka je makrem Z_vrtu_z_grd_povrchu s využitím objektů programu Surfer doplněna o kótu ústí vrtu (sloupec Elevation) na základě gridu povrchu z roku 1950 (viz níže soubor 1950_upr.grd). Toto makro doplní také hloubku vrtu Depth jako rozdíl hodnot Elevation a Z_báze. Ukázka tabulky vrtů je zobrazena v tabulce 2-5. Žlutě jsou podbarveny vrty, ke kterým jsme získali kreslené profily (především pro

kontrolu převzatých dat – viz dále). Oranžově jsou podbarveny vrty, ke kterým jsme nezískali kreslené profily (a nemohli jsme tak provést kontrolu převzatých dat). Vrty bez podbarvení jsou mimo vymezenou oblast zpracování.

ID 	Easting	Northing	Elevation	Azimuth	Dip	Depth	Z_báze	Nejnižší horizont
К-1	-788809.00	-981100.00	271.05	0	-90	373.69	-102.64	24
К-2	-788714.50	-981836.00	262.35	0	-90	396.68	-134.33	24
K-2A	-788657.50	-981814.90	260.28	0	-90	398.87	-138.59	24
к-З	-788827.50	-982776.80	271.10	0	-90	351.66	-80.56	24
KO6/57	-788891.38	-983294.67	268.00	0	-90	248.20	19.80	24
KZ18	-788989.80	-983178.40	268.53	0	-90	305.00	-36.47	24
KZ21	-788437.77	-983504.59		0	-90		25.05	24
KZ24	-789036.39	-983033.06		0	-90		-60.44	24
KZ25	-788789.42	-983025.76	269.33	0	-90	321.01	-51.68	24
KZ41	-789129.47	-983495.65		0	-90		69.19	24
KZ46	-788896.41	-983161.95	268.99	0	-90	304.65	-35.66	24
KZ47	-788853.46	-983037.55	269.59	0	-90	277.10	-7.51	9
KZ48	-789035.38	-983173.72		0	-90		-41.73	24
LB10	-788593.70	-983306.46	267.48	0	-90	302.10	-34.62	24
LB103	-787900.23	-983001.39	271.75	0	-90	379.84	-108.09	24
LB106	-787994.29	-983310.14	274.04	0	-90	341.87	-67.83	24
LB11	-788625.16	-983391.80	266.99	0	-90	258.80	8.19	24
LB114	-788278.93	-983072.95	272.86	0	-90	368.77	-95.91	24
LB117	-788192.71	-983188.46	272.72	0	-90	355.90	-83.18	24
LB12	-788194.41	-983031.53	274.51	0	-90	375.63	-101.12	24

Tabulka 2-5: Ukázka tabulky vrtů.

Z informací od Severočeské dolů a.s. vyplynulo následující:

- 1. Údaje v *.*pbd* (3.*pbd*, 4.*pbd*, ..., 24.*pbd*) jsou v původním stavu před poklesy způsobenými hlubinnou těžbou.
- Horizonty 3 (strop uhelných poloh) až 10 (báze střední lávky) byly postiženy hlubinnou těžbou.
- Hlubináři těžili uhlí pouze mezi horizonty 9 a 10 (nad nimi se projevují poklesy).
- 4. Jediný zlom ve vybraném území vlevo dole je Victoria.
- 5. Žádný jiný významný zlom v tomto území není.
- Jiné vrtné profily, než které nám předali SD Most (žlutě podbarvené v tabulce 2-5), nejsou k dispozici – při tvorbě modelu využívali databázi Mostecké uhelné společnosti (psané profily nejsou – oranžově podbarvené v tabulce 2-5).

Z toho pro tvorbu původního strukturně-geologického modelu před hlubinnou těžbou v zadaném území (viz *Obvod.bln* v tabulce 2-6) vyplynul další postup zpracování:

- 1. Použít grid povrchu původní (před těžbou) z roku 1950: 1950_MMM.grd.
- 2. Identifikovat a určit vektory průběhu zlomu Victoria pomocí *bln* souborů v horizontech 10, 9 a 3.
- 3. Vytvořit gridy horizontů 10, 9 a 3 vhodnou interpolační metodou, přitom respektovat zlom Victoria.
- 4. Rozlišovat vrstvy podloží (pod horizontem 10), těžené uhlí (mezi horizonty 10 a 9), uhelnou sérii (mezi horizonty 9 a 3), nadloží (mezi horizontem 3 a kvartérem) a kvartér (jeho grid mocnosti se získá z údajů z dostupných archivních profilů vrtů).

Tabulka 2-6: Souřadnice obvodového polygonu vymezeného území v souboru *Obvod.bln*.

5,1	
-789000,-983	3500
-787000,-983	3500
-787000,-983	1000
-789000,-983	1000
-789000,-983	3500

Vzhledem k potřebné detailnosti modelu na straně jedné a výpočetním kapacitním možnostem na straně druhé, bylo určeno rozlišení 5*5 m pro 2D gridy a 5*5*1 m pro 3D gridy.

2.1.1 Grid povrchu před hlubinnou těžbou

K dispozici byl soubor *1950_MMM.grd* povrchu, který pokrývá širší území a je v jiném rozlišení než 5*5 m. Proto byl upraven na potřebné parametry (v území *Obvod.bln* a rozlišení 5*5 m) a uložen pod názvem *1950_upr.grd*.

2.1.2 Identifikace průběhu zlomu Victoria v horizontech 10, 9 a 3

Hodnoty Z souřadnic horizontů 10, 9 a 3 (soubory *10.xlsx*, *9.xlsx* a *3.xlsx*) byly postupně vykresleny ve formě *Post map* v prostředí *Surfer*. Spolu se znalostmi o

průběhu zlomu Victoria v této oblasti byly podkladem pro vytvoření vektoru průběhu zlomu Victoria v souborech *Fault_10.bln*, *Fault_9.bln* a *Fault_3.bln* (viz tabulka 2-7) a jejich variantách *Fault_10_uvnitr.bln*, *Fault_9_uvnitr.bln* a *Fault_3_uvnitr.bln* uvnitř polygonu území vymezeném souborem *Obvod.bln*. Detail situace zlomu Victoria na podkladu báze vrstvy 2 (těžené uhlí) je na obr. 2-5. Pokud by se v modelovaném území vyskytlo více zlomů, zapíší se podobným způsobem jako 2., 3., … v pořadí. Na obr. 2-1 je zobrazen průběh zlomu Victoria pro 3. horizont.

7,1 -789285.10, -983121.59

Obr. 2-1: Průběhu zlomu Victoria pro 3. horizont (zeleně, jeho část uvnitř území červeně).

2.2 Výpočet a vizualizace prostorové lokalizace vstupních dat

2.2.1 Vytvoření gridů horizontů 10, 9 a 3 vhodnou interpolační metodou

Pro interpolaci Z gridů horizontů metodou inverzních vzdáleností s respektováním zadaných zlomů bylo vytvořeno makro *Vytvoř_grid_z_údajů_vrstvy* (soubor *Interpolace vrstvy.xlsm*) s využitím objektů programu *Surfer*. Zadání parametrů interpolace je v souboru *Interpolace vrstvy.xlsm*, pro horizont 3 je nastavení parametrů výpočtu na obr. 2-2. Nejprve bylo ale provedeno testování vhodného nastavení parametrů interpolace (*Power*, *Smooth*, *Max data tu use*, *Min data*, *Radius*). Na základě výsledků testování byly jako nejvhodnější pro danou lokalitu vybrány parametry uvedené na obr. 2-2.

	А	В	С	D	E	F	G	н	1	J	к	L	М
1	Et and		ČESKÁ GEOLOG SLUŽBA	ICKÁ	Ma	kro pro i	nter	polac	i vrst	vy			
2	Provádí p	ostupné	generování	gridu báze	vrstvy na zákla	adě vstupního sou	boru *.xl	sx					
3													
4	Obecné p	arametr	y výpočtu:										-
5	ID vrstvy					3			Spus	sť mak	ro		-
7	Doužít při	gridová	ní zlomy (An			4.00		V					-
8	Pouzit pri	griuova		o/nej.		Allo		vytvor	_gria	_z_ua	aju_vi	stvy	-
9	Makro	Vvtvoř	f grid z ú	idaiů vrs	tvv								
10	Vstupy:	ID.xlsx.	ve kterém i	sou vybrány	vstupní údaje	e pro gridování vrs	tvv ID (F5	5)					
11		Fault ID.bln - hlavní zlomy pro gridování											
12		_		1	0								
13													
14	Výstup:	ID_zlon	n.grd										
15													
16	Parametr	výpočt	<u>u</u> :										
17	Power					3							
18	Smooth					0							
19	Max data	to use				20							
20	Min data					1							
21	Radius					1000	m						
22	X_min					-789000							
23	X_max					-787000							
24	Y_min					-983500							
25	Y_max					-981000							
26	n_gridx					401							
27	n_gridy					501							
28			(1										
29	Serantiš	ек Stané	ек, 2023										

Obr. 2-2: Zadání parametrů interpolace pro horizont 3.

Na základě takto vzniklých gridů horizontů (3_zlom.grd, 9_zlom.grd a 10_zlom.grd) byly zjištěny chyby ve vstupních datech (například vyšší Z u horizontu 10 ve srovnání s horizontem 9 ve vrtu LB242 nebo neexistující horizont 10 ve vrtu MR5, i když horizonty 9 a 11 existují...). Všechny zjištěné chyby byly

opraveny a vytvoření gridů 3_zlom.grd, 9_zlom.grd a 10_zlom.grd proběhlo znovu již s opravenými vstupními údaji. Zobrazení gridu horizontu 3 je na obr. 2-1.

2.2.2 Typy hornin

V modelech se budou rozlišovat typy hornin ve vrstvách uvedené v tabulce 2-8.

Kód vrstvy	Typ horniny
5	Kvartér – Vrstva mezi bází kvartéru (viz níže) a povrchem.
4	Nadloží - Vrstva mezi horizontem 3 a bází kvartéru.
3	Uhelná série - Vrstva mezi horizonty 9 a 3.
2	Těžené uhlí - Vrstva mezi horizonty 10 a 9.
1	Podloží - Vrstva pod horizontem 10.

Tabulka 2-8: Typy hornin a kódy vrstev.

Gridy povrchu a horizontů 3, 9 a 10 již byly vytvořeny (viz 2.2.1). Zbývá ještě vytvořit grid báze kvartéru. Vstupní data můžeme získat pouze z archivních profilů vrtů, které jsou dostupné. Z dostupných archivních profilů vrtů byly zapsány údaje *ID*, *From*, *To* a *Hornina* do souboru *Profily s uhlím.xlsm*. Ukázka části těchto údajů je v tabulce 2-9.

Tabulka 2-9: Údaje v souboru *Profily* s *uhlím.xlsm*.

ID	From	То	Hornina
LB2	0	1.25	qh
LB2	1.25	293.5	j
LB2	293.5	296.08	up
LB2	296.08	318	u
LB2	318	330	up
LB2	330	335	j
KZ18	0	4.2	qh
KZ18	4.2	256.7	j
KZ18	256.7	259	up
KZ18	259	280	u
KZ18	280	306	up
KZ18	306	308	j
KZ18	308	308.5	znelec
KZ46	0	3	qh
KZ46	3	264	j

Makrem *Mocnost_kvarter* byly vybrány pouze údaje o hloubce kvartéru jednotlivých vrtů (hornina "qh") a makrem *Dopln_XY* byly doplněny souřadnice vrtů. Výsledné údaje byly překopírovány do souboru *1.xlsx* (tabulka 2-10), který je vstupním souborem pro gridování mocnosti kvartéru.

Х	Y	Z	Název
-787907.49	-983097.03	1.25	LB2
-788989.8	-983178.4	4.2	KZ18
-788896.41	-983161.95	3	KZ46
-788853.46	-983037.55	3.5	KZ47
-788625.16	-983391.8	0.4	LB11
-788194.41	-983031.53	3.15	LB12
-788067.03	-983370.18	0.3	LB18
-788376.25	-982898.6	2	LB29
-787895.32	-982939.99	0.4	LB56

Tabulka 2-10: Údaje v souboru *1.xlsx*.

Grid mocnosti kvartéru (*Mocnost_Vrstva_1.grd*) byl vytvořen makrem *Vy-tvoř_grid_z_údajů_vrstvy* (viz obr. 2-2) se zadáním parametru *ID vrstvy* 1 a *Použít při gridování zlomy (Ano/Ne): Ne.* Odečtením *Mocnost_Vrstva_1.grd* od 1950_upr.grd vznikne grid báze kvartéru *Baze_kvarteru.grd*.

Na obr. 2-3 jsou zobrazeny všechny dělící horizonty vrstev uvedených v tabulce 2-8. Odshora dolů povrch, báze kvartéru, horizont 3, horizont 9 a horizont 10.

Obr. 2-3: Dělící horizonty vrstev.

Pro další zpracování byly gridy dělících horizontů vrstev uvedených v tabulce 8 přejmenovány na *Hor_*.grd*, kde * označuje pořadí dělícího horizontu vrstev (5 - povrch, 4 - báze kvartéru a strop nadloží, 3 - strop uhelné série a báze nadloží, 2 - strop těženého uhlí a báze uhelné série, 1 - báze těženého uhlí a strop podloží).

2.3 Konstrukce 3D strukturně geologického modelu

Makro *Geol_model_3D* realizuje tvorbu 3D gridu geologického modelu. Schéma vstupů a výstupů makra, které je naprogramováno v jazyce VBA, je na obr. 2-4. Tento program využívá objekty *Surfer*u, proto je nezbytné, aby byl na provádějícím počítači nainstalován program *Surfer* firmy Golden Software.

Protože se linie zlomu v horizontech 3, 9 a 10 posunuje, což způsobuje nepřesnosti při vizualizaci, byly gridy *Hor_3.grd*, *Hor_2.grd* a *Hor_1.grd* dělících horizontů vrstev v oblasti tektonického porušení zlomu Victoria vyblankovány (byla zde stanovena *NoData value* 1.70141e+038) uvnitř polygonu *Uzemi_zlomu_Victoria.bln* (obr. 2-5).

Obr. 2-5: Detail situace zlomu Victoria na podkladu báze vrstvy 2 (těžené uhlí). Fialovou barvou je zobrazen polygon *Uzemi_zlomu_Victoria.bln*, modře je zobrazen polygon výskytu tektonického porušení pro vrstvu 2 (těžené uhlí) a zeleně je zobrazen polygon výskytu tektonického porušení pro vrstvu 3 (uhelná série). Strukturně geologický model ve formě 3D gridu se tvoří postupně makrem $Geol_model_3D$ (obr. 2-6) ve všech bodech 2D gridů dělících horizontů (mimo body s hodnotou *NoData value* 1.70141e+038) v síti 5*5 m podle zadaného kroku (1 m) a dalších zadaných parametrů od podloží směrem vzhůru. Přitom se do výstupního textového souboru $GM_3D_grid.dat$ zapisuje:

- souřadnice *X*,
- souřadnice *Y*,
- souřadnice Z,
- kód typu hornin vrstvy (5 kvartér mezi dělícími horizonty vrstev 4 a 5, 4 nadloží mezi dělícími horizonty vrstev 3 a 4, 3 uhelná série mezi dělícími horizonty vrstev 2 a 3, 2 těžené uhlí mezi horizonty 1 a 2, 1 podloží pod dělícím horizontem vrstev 1)
- tektonika (hodnota +10 ke kódu typu horniny v polygonech výskytu tektonik ve vrstvách 3 a 2 – viz obr. 2-5), jinak kód typu hornin.

	А	В	C D	E	F G	Н	J K	L M	Ν
	By color	ČESI GEO SLUŽ	ká Logick/ Žba	A Geo geolo	ol_model_3 ogického n	3D - vytvo nodelu a r a tek	vření 3D grid níry nejistot toniky	u strukturně y typů horni	n
1						u ten	conny		
2	Vstupy:	Hor_*.grd - gridy	/ Z horizontů: 5	- povrch, 4 - báze kv	artéru,				
3		3 - st	rop uhelných p	oloh (Mach 3), 2 - str	op těženého uhlí (Mach	9), 1 - báze těženého	uhlí (Mach 10)		
4		Tekt_*.dat - obv	odové polygony	rtektonik v typu horr	niny *: 5 - kvartér mezi ł	norizonty 4 a 5, 4 - nac	lloží mezi horizonty 3 a 4,	Spust mak	ro
5		3 - uł	nelná série mez	i horizonty 2 a 3, 2 -	těžené uhlí mezi horizo	nty 1 a 2, 1 - podloží p	od horizontem 1	Gool model	20
6		Poku	d v typu hornin	y X není tektonika ur	čena, pak Tekt_X.dat n	eexistuje.		Geol_model	_30
7									
8	Výstup:	GM_3D_grid.dat	t - soubor 3D gr	idu geomodelu hodn	iot typů hornin, tektonil	G H J K L M N Ddel_3D - vytvoření 3D gridu strukturně ého modelu a míry nejistoty typů hornin a tektoniky o uhlí (Mach 9), 1 - báze těženého uhlí (Mach 10) vartér mezi horizonty 4 a 5, 4 - nadloží mezi horizonty 3 a 4, Spusť makro Geol_model_3D mezi horizonty 1 a 2, 1 - podloží pod horizontem 1 Geol_model_3D nin, tektoniky a míry nejistoty typů hornin a tektoniky Hor_ 5 Hor_ 6 C:\čgs\Poddolovani\Mar_Radcice_model\Horiz_Tekt 1 S item modelu), které budou zahrnuto do modelu (m): 3 3 S kde * je typ základní horniny): Tekt_ ni XY: 2 5 Spuštěno: 11.09.2023, 8:04:03 0 Ukončeno: 11.09.2023, 9:08:52			
9									
10	Obecné pa	arametry výpočtu							
11	Počet horiz	zontů (typů základ	ních hornin 1, 2	2,):		5			
12	Začátek ná	izvu gridů Z horizo	ntů (Hor_*.gro	l, kde * je pořadí hori	izontu):			Hor_	
13	Název slož	ky s gridy Z horizo	ntů a obvodový	mi polygony tektonik	c	C:\	čgs\Poddolovani\Mar_Rad	cice_model\Horiz_Tekt	
14	Krok Z 3D I	modelu (m):				1			
15	Mocnost p	odloží (pod posled	ním horizonten	n) a nadloží (nad hori	ním horizontem modelu), které budou zahrnu	to do modelu (m):	3	
16	Číslo horníl	no horizontu zahrr	nutého do mod	elu:		3			
17	Začátek ná	izvu obvodových p	olygonů tekton	ik v typu horniny * (T	<pre>rekt_*.dat, kde * je typ</pre>	základní horniny):		Tekt_	
18	Poloměr vy	hledávací kružnic	e (m) zóny pro	stanovení nejistoty h	ornin na dané úrovni XY	: 11			
19	Vzdálenost	t ve směru Z (m) zo	óny pro stanove	ení nejistoty hornin n	a dané úrovni XY:	2			
20	Počet typů	hornin pro stanov	ení nejistoty ho	ornin:		5			
21							Spuštěno: 11.09.2023	, 8:04:03	
22							Ukončeno: 11.09.202	3,9:08:52	
23	© Františe	k Staněk, 2023							

Obr. 2-6: Zadání vstupních parametrů a tlačítko ke spuštění makra Geol_model_3D.

Ukázka části výstupního souboru *GM_3D_grid.dat* je v tabulce 2-11. Tento soubor lze přímo načíst do prostředí programu *Voxler* (případně *Move* [9]) pro provedení různých způsobů vizualizace strukturně geologického modelu a nejistot způsobenou typy hornin nebo tektonikou ve 3D.

Jestliže se bude vytvářet více variant modelu s různými parametry, je nutno soubor $GM_3D_grid.dat$ přejmenovat (například do názvu souboru doplnit hodnoty parametrů a/nebo datum), neboť při dalším spuštění by se původní soubor $GM_3D_grid.dat$ přepsal.

-983500	57	4	4
-983500	30	1	1
-983500	31	1	1
-983500	32	1	1
-983500	33	2	12
-983500	34	2	12
-983500	35	2	12
-983500	36	2	12
-983500	37	2	12
-983500	38	2	12
-983500	39	2	12
-983500	40	2	12
-983500	41	2	12
-983500	42	2	12
-983500	43	2	12
-983500	44	2	12
-983500	45	2	12
-983500	46	2	12
-983500	47	2	12
-983500	48	3	13
-983500	49	3	13
-983500	50	3	13
-983500	51	3	13
-983500	52	3	13
-983500	53	3	13
-983500	54	4	4
-983500	55	4	4
-983500	56	4	4
-983500	30	1	1
	-983500 -98350	-983500 57 -983500 30 -983500 31 -983500 33 -983500 34 -983500 35 -983500 36 -983500 37 -983500 37 -983500 39 -983500 40 -983500 41 -983500 42 -983500 43 -983500 44 -983500 44 -983500 45 -983500 46 -983500 47 -983500 49 -983500 50 -983500 51 -983500 52 -983500 53 -983500 54 -983500 56 -983500 56	$\begin{array}{c} -983500 & 57 & 4 \\ -983500 & 30 & 1 \\ -983500 & 31 & 1 \\ -983500 & 32 & 1 \\ -983500 & 34 & 2 \\ -983500 & 35 & 2 \\ -983500 & 36 & 2 \\ -983500 & 37 & 2 \\ -983500 & 37 & 2 \\ -983500 & 37 & 2 \\ -983500 & 30 & 2 \\ -983500 & 41 & 2 \\ -983500 & 42 & 2 \\ -983500 & 42 & 2 \\ -983500 & 42 & 2 \\ -983500 & 43 & 2 \\ -983500 & 44 & 2 \\ -983500 & 45 & 2 \\ -983500 & 46 & 2 \\ -983500 & 46 & 2 \\ -983500 & 46 & 3 \\ -983500 & 50 & 3 \\ -983500 & 51 & 3 \\ -983500 & 51 & 3 \\ -983500 & 52 & 3 \\ -983500 & 54 & 4 \\ -983500 & 56 & 4 \\ -983500 & 50 & 3 \\ -983500 & 56 & 4 \\ -983500 & 30 & 1 \\ \end{array}$

Tabulka 2-11: Ukázka obsahu souboru GM_3D_grid.dat.

2.4 Vizualizace strukturně geologického modelu ve 3D

Hodnoty 3D gridu strukturně geologického modelu vypočtené makrem *Geol_model_3D* obsažené v souboru *GM_3D_grid.dat* lze různým způsobem vizualizovat v prostředí programu *Voxler* firmy Golden Software. Situace po načtení souboru *GM_3D_grid.dat* do prostředí *Voxleru* a po vytvoření objektů pro vizualizaci je na obr. 2-7. Vlevo je seznam všech vytvořených objektů, výběrem kterých se zvolí typ zobrazení a druh zobrazované veličiny. Dále jsou uvedeny příklady některých možných způsobů zobrazení geomodelu.

Vizualizace s pomocí grafického výstupu *ScatterPlot* se dají provádět přímo ze vstupního souboru (*GM_3D_grid.dat*). Vizualizace s pomocí grafických výstupů *FaceRender*, *VolRender*, *OrthoImage* a *Isosurface* vyžadují nejprve vytvoření interního 3D gridu *Voxleru* s pomocí modulu *Gridder* (objekt *Gridder GM* na obr. 2-7). Na obr. 2-8 je nastavení vlastností interního 3D gridu typů hornin *Gridder GM*.

Property Manager	×	Prope	rty Manager		×	Property Manager		×
Auto Update Updat	e Now ?	🗹 Au	to Update Upd	ate Now	?	🗹 Auto Update 🛛 🕔	Ipdate Now	?
General Geometry Search	ı	Gene	ral Geometry Sear	ch		General Geometry	iearch	
🖃 Gridder GM (id:8)		🗆 Ge	ometry			Search		
Input	GM_3D_grid_22_2_22_all.dat	-	X Limits	(-789000, -787000)		Search type	Simple	~
Input points	6340679		X min	-789000		Radius	0.1	
Input component	Column D: Typ_hor 🛛 🗸 🗸	-	X max	-787000		Min count	1	•
Data dependent param	Recalculate		Y Limits	(-983500, -981000)		Max count	1	
Action	Begin Gridding		Y min	-983500				
Method			Y max	-981000				
Method	Inverse distance 🗸 🗸		Z Limits	(-93, 129)				
Anisotropy	lsotropic 🗸		Z min	-93				
Power	2		Z max	129				
Smooth	0	=	Resolution	(401 x 501 x 223)				
			Nx	401	-			
			Ny	501	-			
			Nz	223	•			
		-	Spacing	(5, 5, 1)				
			X spacing	5				
			Y spacing	5				
			Z spacing	1				
Input The input this module is con	nected to.	Z spa The sp	c ing pacing between node	s in the Z direction.		Radius Radius of the search nei	ghborhood (in data u	nits).

Obr. 2-8: Nastavení vlastností interního 3D gridu typů hornin *Gridder GM*.

Vrty použité pro konstrukci strukturně geologického modelu byly pro vizualizaci rozděleny do dvou souborů:

- *collars_profily.xlsx*, vrty s větší věrohodností, ke kterým jsme měli k dispozici kreslené profily a které jsou vykreslovány červeně (obr. 2-7),
- *collars_neprofily.xlsx*, vrty s menší věrohodností, ke kterým jsme neměli k dispozici kreslené profily a které jsou vykreslovány bílou barvou (obr. 2-7).

Horizonty (*Hor_*.grd* - gridy *Z* horizontů: 5 - povrch, 4 - báze kvartéru, 3 - strop uhelných poloh, 2 - strop těženého uhlí, 1 - báze těženého uhlí) jsou vykresleny s pomocí grafického výstupu *HeightField* (obr. 2-7).

Na obr. 2-9 je vykreslen strukturně geologický model s pomocí grafického výstupu *ScatterPlot*. Na obr. 2-10 je vizualizace zlomu Victoria s pomocí grafického výstupu *ScatterPlot*.

Obr. 2-9: Vizualizace strukturně geologického modelu s pomocí grafického výstupu *ScatterPlot.*

Obr. 2-10: Vizualizace zlomu Victoria s pomocí grafického výstupu ScatterPlot.

Na obr. 2-11 je vykreslen strukturně geologický model s pomocí grafického výstupu *FaceRender*. Tímto grafickým výstupem lze zobrazit i řezy tělesem (obr. 2-12).

Obr. 2-11: Vizualizace strukturně geologického modelu s pomocí grafického výstupu *FaceRender*.

Obr. 2-12: Vizualizace řezu *X*=500 m strukturně geologického modelu s pomocí grafického výstupu *FaceRender*.

Na obr. 2-13 je vykreslen strukturně geologický model s pomocí grafického výstupu *VolRender*. S pomocí grafického výstupu *ClipPlane* (ten lze aplikovat na většinu grafických objektů) lze zobrazit řezy tělesem (obr. 2-14).

Obr. 2-13: Vizualizace strukturně geologického modelu s pomocí grafického výstupu *VolRender*.

Obr. 2-14: Vizualizace řezu *X*=-700 m od středu strukturně geologického modelu s pomocí grafického výstupu *ClipPlane* a *FaceRender*.

Na obr. 2-15 je vykreslen strukturně geologický model s pomocí řezů - grafických výstupů *OrthoImage_XY*, *OrthoImage_XZ* a *OrthoImage_YZ*.

Obr. 2-15: Vizualizace strukturně geologického modelu s pomocí řezů - grafických výstupů *Ortholmage_XY*, *Ortholmage_XZ* a *Ortholmage_YZ*.

Na obr. 2-16 je vykreslen strukturně geologický model s pomocí grafického výstupu *Isosurface* - obálky s mezní hodnotou 2.5 (uvnitř této obálky je tedy uhelná série, těžené uhlí a kousek podloží). Mezní hodnotu lze libovolně měnit. S pomocí grafického výstupu *ClipPlane* lze zobrazit řezy tělesem (obr. 2-17).

Obr. 2-16: Vizualizace strukturně geologického modelu s pomocí grafického výstupu *Isosurface*.

Obr. 2-17: Vizualizace řezu *X*=-500 m od středu strukturně geologického modelu s pomocí grafického výstupu *ClipPlane* a *Isosurface*.

3. METODICKÝ POSTUP A ALGORITMY TVORBY A VIZUALIZACE 3D MODELU MÍRY NEJISTOTY STRUKTURNĚ-GEOLOGICKÉHO MODELU

V této kapitole jsou definovány jednotlivé kroky metodického postupu tvorby a vizualizace 3D modelu míry nejistoty strukturně-geologického modelu na příkladu ložiska Mariánské Radčice. Tyto kroky na sebe navazují a v nich použité algoritmy zpracování údajů a vytvořený software jsou popsány ve stejně číslovaných podkapitolách:

- 3.1 Výpočet nejistoty hranic horninových těles a nejistoty průběhu zlomů.
- 3.2 Výpočet obecné nejistoty, snížení nejistoty v okolí vrtů a sloučení hodnot různých druhů nejistot v bodech 3D gridu strukturně-geologického modelu.
- 3.3 Vizualizace 3D modelu míry nejistoty strukturně-geologického modelu.

Jednotlivé kroky metodického postupu jsou realizovány tak, aby bylo možno při libovolné změně parametrů tyto kroky programově rychle přepočítat bez nutnosti zdlouhavých ručních postupů. Proto je také možné snadno provést modelování v několika variantách (například při změně vstupních parametrů). Metodický postup je použitelný na všech ložiscích podobného typu.

Makro *Geol_model_3D* realizuje tvorbu 3D gridu geologického modelu a také míry nejistoty typů hornin a typů tektoniky. Makro MS Excelu *Nejistota_Obec_Vrty* realizuje v 3D gridu strukturně geologického modelu a nejistoty typů hornin a typů tektoniky (viz část 2) dopočet "obecné nejistoty" (zvyšující se hodnota minimální nejistoty směrem do hloubky), lokální snížení nejistoty (zvýšení věrohodnosti) v okolí průzkumných vrtů podle zadaných vstupních parametrů a sloučení hodnot různých druhů nejistot.

3.1. Výpočet nejistoty hranic horninových těles a nejistoty průběhu zlomů

3.1.1 Způsob stanovení nejistoty hranic horninových těles

Pro stanovení nejistoty hranic horninových těles byl zvolen výpočet prostorové entropie, jakožto ukazatele nejistoty. Entropie vyjadřuje jakousi míru neurčitosti (nejistoty). Klesá-li entropie, roste celková informace, a naopak. Entropie je střední hodnota míry informace k odstranění nejistoty, která je dána konečným počtem vzájemně vylučujících se jevů (tady jednotlivé druhy hornin). Tento princip publikoval na několika studiích ve 2D Brus (2014). Uvádí zde, že zakladatel pojmu entropie C. E. Shannon definoval entropii následovně (Shannon a Weaver, 1949): pro systém s konečným počtem možných stavů $S \in \{s_1, s_2, ..., s_n\}$ a pravděpodobnosti jejich výskytu $P(s_i)$ je informační entropie H(S) definována:

$$H(S) = -\sum_{i=1}^{n} P(s_i) \log_2 P(s_i)$$

Poznámka: Pokud je $P(s_i) = 0$ tak je součin v sumě také roven 0.

Entropie je maximální, když jsou pravděpodobnosti výskytu vylučujících se stavů stejné (rozdělení je rovnoměrné): $H(S_{max}) = \log_2 n$, tedy právě tehdy, když

$$P(s_i) = \frac{1}{n} \ pro \ \forall i$$

Entropie je minimální, pokud jsou všechny pravděpodobnosti $P(s_i)$ rovny nule, kromě jedné, jež nabývá hodnoty 1. Musí tedy platit: $H(S_{min}) = 0$ právě tehdy, když platí $\exists P(s_k) = 1$ a $P(s_i) = 0$ pro $\forall i \neq k$.

V prostorovém kontextu lze entropii interpretovat s ohledem na modelovanou oblast (3D grid) jako množství chybějící informace, neboli nejistoty s přihlédnutím k diskrétním vlastnostem buňky, což pro případ 2D uvádí (Brus, 2014) a zmiňuje zde práci Wellmanna a Regenauer-Lieba (2012). V tomto pojetí je chybějící informací příslušnost ke konkrétnímu druhu horniny (pole *ID* u jednotlivých vrstev - typů hornin), protože vzhledem k chybám na geologických mapách a také vlivem samotného přenosu dalších informací (analogových řezů apod.) do digitální formy docházelo ke vzniku nejistoty. Z tohoto pohledu lze uvažovat o příslušnosti dané

buňky ke konkrétnímu druhu horniny 1, 2 až n (v naší lokalitě Mariánských Radčic je n = 5).

V programu *Geol_model_3D* je výpočet entropie v určitém bodě 3D gridu s využitím zadaného okolí bodu prováděn na základě následující rovnice:

$$H(S) = -\sum_{i=1}^{n} p_i \ln p_i,$$

kde:

pravděpodobnost

$$p_i = \frac{n_i}{N}$$

je podíl počtu bodů 3D gridu horniny *i* k celkovému počtu *N* bodů 3D gridu hornin v definovaném okolí (válec zadané výšky se středem v bodě 3D gridu, pro který stanovujeme entropii),

 n_i je počtu bodů 3D gridu horniny *i* v definovaném okolí,

N je celkový počet bodů 3D gridu hornin v definovaném okolí,

n je celkový počet druhů hornin (5).

Výsledkem je modifikovaný tzv. Shannonův index (Jenness a kol., 2011 in Brus, 2014), který nabývá hodnot v rozmezí od 0 do ln(n), kde *n* je počet unikátních kategorií (druhů hornin). Míra nejistoty v rozsahu od 0 do 1 se pak získá podílem vypočtené entropie k ln(n).

Algoritmus lze modifikovat – například zvyšovat nejistotu směrem do hloubky zvětšováním definovaného okolí (poloměru a výšky válce).

3.1.2 Způsob stanovení nejistoty průběhu zlomů

Algoritmus stanovení nejistoty průběhu zlomů je odlišný. Vystihuje fakt, že přesně zadaná pozice poruchy v daném dělícím horizontu vrstev je nejistá. Tato nejistota a také zóna porušení může být pro každou poruchu a pro každou vrstvu jiná. Proto pro každou vrstvu se zadanou tektonikou (v našem případě 3 a 2) je ve vstupním textovém souboru *Tekt_*.dat* pro každou tektoniku (v našem případě

pouze jedna - zlom Victoria) stanoven obvodový polygon výskytu tektonického porušení a hodnota míry nejistoty této poruchy v rozmezí od 0 do 1.

Na obr. 2-5 je detail situace zlomu Victoria na podkladu báze vrstvy 2 (těžené uhlí). Fialovou barvou je zobrazen polygon *Uzemi_zlomu_Victoria.bln* (viz 2.1.2), nastavení hodnot *NoData value* uvnitř tohoto polygonu v gridu *Hor_1.grd* se projevuje černě vykreslenou oblastí. Modře je zobrazen polygon výskytu tektonického porušení pro vrstvu 2 (těžené uhlí) a zeleně je zobrazen polygon výskytu tektonického porušení pro vrstvu 3 (uhelná série). Posun zeleného polygonu vzhledem k modrému je způsoben posunem linií zlomu Victoria v horizontech 10, 9 a 3.

Pro každý bod 3D gridu modelu se pak do výstupního souboru *GM_3D_grid.dat* v oblasti výskytu poruchy zapisuje kód tektoniky (hodnota +10 ke kódu typu horniny) a příslušná hodnota míry nejistoty způsobená tektonikou.

3.1.3 Popis makra Geol_model_3D

<u>Vstupy</u>:

- Hor_*.grd gridy Z dělících horizontů vrstev: 5 povrch, 4 báze kvartéru, 3 - strop uhelných poloh (horizont 3), 2 - strop těženého uhlí (horizont 9), 1 - báze těženého uhlí (horizont 10), viz 2.1.
- *Tekt_*.dat –* textové soubory s obvodovými polygony a nejistotami tektonik v typu horniny (vrstvě) *: 5 kvartér mezi dělícími horizonty vrstev 4 a 5, 4 nadloží mezi dělícími horizonty vrstev 3 a 4, 3 uhelná série mezi dělícími horizonty vrstev 2 a 3, 2 těžené uhlí mezi dělícími horizonty vrstev 1 a 2, 1 podloží pod dělícím horizontem vrstev 1, viz 2.1.2. Pokud v typu horniny *X* není tektonika určena, pak *Tekt X.dat* neexistuje.

Příprava:

- Vytvoření pracovního adresáře, kde se umístí *Geol_model_3D.xlsm*.
 V tomto adresáři se makro *Geol_model_3D* spustí tlačítkem (viz obr. 2-6) a do něj se také ukládá výstupní soubor (viz výstupy).
- Uložení 2D gridů Z dělících horizontů vrstev (*Hor_*.grd*) do adresáře uvedeném v buňce M13 (viz obr. 2-6).

 Uložení textových souborů *Tekt_*.dat* s obvodovými polygony a nejistotami tektonik ve vrstvě * do adresáře uvedeném v buňce M13 (viz obr. 2-6).

Postupně se vytváří výstupní textový soubor *GM_3D_grid.dat* - soubor 3D gridu geomodelu hodnot typů hornin, tektoniky a míry nejistoty typů hornin a tektoniky na základě 2D gridů *Hor_*.grd Z* dělících horizontů vrstev a textových souborů *Tekt_*.dat* s obvodovými polygony a nejistotami tektonik v typu horniny (vrstvě) * ve všech bodech 2D gridů dělících horizontů vrstev (mimo body s hodnotou *No-Data value* 1.70141e+038) ve stejné síti (ve zkušebním příkladu 5*5 m) podle zadaných parametrů:

- "*Krok Z 3D modelu*" viz obr. 2-6, buňka H14,
- "Počet horizontů (typů základních hornin 1, 2, …)" viz obr. 2-6, buňka H11,
- "Mocnost podloží (pod posledním horizontem) a nadloží (nad horním horizontem modelu), které budou zahrnuto do modelu (m)" viz obr. 2-6, buňka M15,
- "Číslo horního horizontu zahrnutého do modelu" viz obr. 2-6, buňka H16,
- "Poloměr vyhledávací kružnice (m) zóny pro stanovení nejistoty hornin na dané úrovni XY" – viz obr. 2-6, buňka H18,
- "Vzdálenost ve směru Z (m) zóny pro stanovení nejistoty hornin na dané úrovni XY" – viz obr. 2-6, buňka H19,
- "Počet typů hornin pro stanovení nejistoty hornin" viz obr. 2-6, buňka H20,

od podloží (od Z spodního dělícího horizontu vrstev minus M15) s krokem H14 směrem vzhůru až po Z dělícího horizontu vrstev H16 plus M15. Parametry H18 a H19 definují okolí pro určení entropie a odpovídající nejistotu typů hornin (poloměr a výšku vyhledávacího válce) a parametr H20 určuje počet typů hornin n – viz 3.1.1.

Výstupní textový soubor *GM_3D_grid.dat* obsahuje následující údaje:

• souřadnice X,

- souřadnice Y,
- souřadnice Z,
- typ hornin (1 podloží pod horizontem 1, 2 těžené uhlí mezi dělícími horizonty vrstev 1 a 2, 3 uhelná série mezi dělícími horizonty vrstev 2 a 3, 4 nadloží mezi dělícími horizonty vrstev 3 a 4, 5 kvartér mezi dělícími horizonty vrstev 4 a 5)
- nejistota způsobená typy hornin (viz 3.1.1),
- tektonika (hodnota +10 k typu horniny v polygonech výskytu tektonik ve vrstvách 2 a 3 viz 2.3.1), jinak typ hornin,
- nejistota způsobená tektonikou (viz 3.1.2).

Ukázka části výstupního souboru *GM_3D_grid.dat* je v tabulce 2-11. Tento soubor lze přímo načíst do prostředí programu *Voxler* (případně *Move*) pro provedení různých způsobů vizualizace strukturně geologického modelu a nejistot způsobenou typy hornin nebo tektonikou ve 3D.

Jestliže se bude vytvářet více variant modelu s různými parametry, je nutno soubor $GM_3D_grid.dat$ přejmenovat (například do názvu souboru doplnit hodnoty parametrů a/nebo datum), neboť při dalším spuštění by se původní soubor $GM_3D_grid.dat$ přepsal.

3.2. Výpočet obecné nejistoty, snížení nejistoty v okolí vrtů a sloučení hodnot různých druhů nejistot v bodech 3D gridu strukturně-geologického modelu

Výše popsaný výpočet nejistoty typů hornin a zlomů je pouze úvodním krokem ke stanovení celkové nejistoty v jednotlivých buňkách 3D geologického modelu. Makro *MS Excelu Nejistota_Obec_Vrty* realizuje v 3D gridu strukturně geologic-kého modelu a nejistoty typů hornin a typů tektoniky (viz část 3.1) dopočet "obecné nejistoty" (zvyšující se hodnota minimální nejistoty směrem do hloubky), lokální snížení nejistoty (zvýšení věrohodnosti) v okolí průzkumných vrtů podle zadaných vstupních parametrů a sloučení hodnot různých druhů nejistot. Schéma vstupů a výstupů makra, které je naprogramováno v jazyce *VBA (Visual Basic for Applications)*, je na obr. 3-1.

Obr. 3-1: Schéma vstupů a výstupů makra Nejistota_Obec_Vrty.

3.2.1 Způsob dopočtu obecné nejistoty a snížení nejistoty v okolí vrtů

Tzv. "obecná nejistota" číselně vyjadřuje fakt, že i povrchová geologie je ve větším detailu bez rozsáhlých technických prací do značné míry nejistá: nepřesná lokalizace litologických hranic (hranic vrstev), interpretativní lokalizace zlomů, ne úplně kolmý průběh vrtů, nepřesná lokalizace horizontů ve vrtech apod. Smyslem polygonů obecné nejistoty, pokud se je uživatel rozhodne využít (viz 3.2.3), pak je v této obecné nejistotě expertním odhadem odlišit části území s obecně lepším a horším pokrytím daty. Hodnota obecné nejistoty stoupá lineárně směrem do hloubky od povrchu podle zadaných vstupních parametrů.

Lokální snížení nejistoty (zvýšení věrohodnosti) v okolí průzkumných vrtů probíhá podle vstupních parametrů zadaných pro každý vrt zvlášť ve vstupním souboru (obr. 3-2). Procento snížení nejistoty klesá lineárně v zadaném poloměru od polohy vrtu směrem k obvodu zadané kružnice vlivu, kde je už snížení nejistoty nulové.

								Poloměr snížení	% snížení	Nejnižší	
1	ID	Easting	Northing	Elevation	Azimuth	Dip	Depth	nejistoty vrtu	nejistoty ve vrtu	vrstva	
44	LM13	-788529.22	-981151.51	268.09	0	-90	345.16	56.00	35.00	1	
45	MR10	-788875.85	-982844.99	271.14	0	-90	341.09	56.00	35.00	1	
46	MR11	-787608.15	-982129.00	246.77	0	-90	313.97	56.00	35.00	1	
47	MR12	-788950.47	-982547.84	273.07	0	-90	366.00	56.00	35.00	1	
48	MR13	-788759.04	-982601.28	272.78	0	-90	375.33	56.00	35.00	1	
49	MR26	-788803.45	-983147.69	268.69	0	-90	308.20	56.00	35.00	1	
50	MR41	-788876.87	-982876.25	270.95	0	-90	336.58	56.00	35.00	1	
51	MR42	-788860.92	-982759.44	271.33	0	-90	328.05	56.00	35.00	1	
52	MR5	-787997.89	-981920.47	251.02	0	-90	315.81	56.00	35.00	1	
53	MR50	-788541.13	-982725.18	272.62	0	-90	351.00	56.00	35.00	1	
54	MR51	-788386.83	-982781.98	273.25	0	-90	381.98	56.00	35.00	1	
55	MR6	-788187.70	-981741.60	255.83	0	-90	303.97	56.00	35.00	3	
56	8	-788528.69	-981332.32	265.69	0	-90	362.68	41.00	25.00	1	
57	12	-788662.33	-981313.26	266.02	0	-90	362.79	41.00	25.00	1	
58	27	-788734.38	-982243.36	273.13	0	-90	338.22	41.00	25.00	3	
59	30	-788609.50	-981665.23	261.16	0	-90	328.29	41.00	25.00	3	
60	31	-788678.86	-981995.73	263.53	0	-90	329.81	41.00	25.00	3	
61	34	-788322.89	-982106.09	258.22	0	-90	330.42	41.00	25.00	3	
62	2-57KZ	-788954.18	-983432.32	266.26	0	-90	193.22	41.00	25.00	1	
63	C-97	-787545.49	-983253.40	274.86	0	-90	314.74	41.00	25.00	1	
64	I-78	-787222.11	-982164.09	244.02	0	-90	294.62	41.00	25.00	1	
65	K-1	-788809.00	-981100.00	271.05	0	-90	373.69	41.00	25.00	1	
66	K-2	-788714.50	-981836.00	262.35	0	-90	396.68	41.00	25.00	1	
67	K-2A	-788657.50	-981814.90	260.28	0	-90	398.87	41.00	25.00	1	
68	K-3	-788827.50	-982776.80	271.10	0	-90	351.66	41.00	25.00	1	
69	KO6/57	-788891.38	-983294.67	268.00	0	-90	248.20	41.00	25.00	1	
70	KZ25	-788789.42	-983025.76	269.33	0	-90	321.01	41.00	25.00	1	

Obr. 3-2: Struktura vstupního souboru vrtů vrty_MR_nejistota.xlsx.

3.2.2 Způsob sloučení hodnot různých druhů nejistot

Sloučení hodnot různých druhů nejistot v bodech 3D gridu je možné provést prostým součtem s omezením hodnotou 1 (maximální nejistota), ale správnější je spíše použití sloučení hodnot různých druhů nejistot na principech fuzzy logiky.

Fuzzy logika je rozšířením logiky dvouhodnotové na vícehodnotovou. Tzn., že se pravdivostní hodnota může spojitě měnit od 0 (nepravda) až po 1 (pravda). Tento stupeň pravdivosti se ve fuzzy logice nazývá *plauzabilita*, neboli věrohodnost (opak nejistoty).

Pro operaci konjunkce tvrzení $t_1, t_2, ..., t_n$ platí, že věrohodnost (*V*) konjunkce tvrzení se rovná minimu věrohodností jednotlivých tvrzení (Vondrák, 2009):

 $V(\wedge(t_1, t_2, ..., t_n)) = \min(V(t_1), V(t_2), ..., V(t_n))$

V našem případě v každém bodě 3D gridu oblasti zájmu potřebujeme sloučit různé druhy nejistoty, což provedeme tak, že v tomto bodě vybereme maximum všech prostorově odpovídajících druhů hodnot nejistoty (typů hornin, tektoniky a obecné nejistoty).

3.2.3 Popis makra Nejistota_Obec_Vrty

Vstupy:

- *.*dat* soubor 3D gridu geomodelu hodnot typů hornin, tektoniky a míry nejistoty typů hornin a tektoniky (výstup z makra *Geol_model_3D* viz 2.3).
- Soubor vrtů **.*xlsx* použitých pro konstrukci geomodelu. Ve zkušebním příkladu to byl soubor *vrty_MR_nejistota.xlsx*, jehož struktura je zobrazena na obr. 3-2.
- Grid Z povrchu (viz 2.3), ve zkušebním příkladu *Hor_5.grd*.
- Textový soubor Polyg_obec.dat (pokud má parametr "Existují polygony s jinou obecnou nejistotou soubor Polyg_obec.dat (Ano/Ne):" hodnotu "Ano") polygony s jinými parametry obecné nejistoty než jsou zadané s pomocí parametrů "Hodnota obecné nejistoty základní na povrchu (Nejistota_obec_povrch):" a "Hodnota obecné nejistoty základní v max. hloubce (Nejistota_obec_dole)". Struktura tohoto souboru s testovacími údaji zkušebního příkladu je v tab. 3-1 a vizualizace polygonů s jinou obecnou nejistotou Polyg_obec.dat ve zkušebním příkladu je na obr. 3-3.

Tabulka 3-1: Struktura souboru Polyg_obec.dat.

```
4 'Počet polygonů s jinou obecnou nejistotou, u každého je v 1. řádku Počet bodů
Obecná_nejistota_povrch Obecná_nejistota_v_max_hloubce a následuje Počet_bodů souřadnic
Х, Ү
8 0.01 0.4
-788173.64909925, -981989.86173198
-787859.94922125, -982040.73198246
-787882.55822147, -982427.91111117
-787922.12397184, -982747.26323922
-787984.29872244, -982843.35149014
-788394.08685136, -982605.95698787
-788179.3013493, -982283.77873479
-788173.64909925, -981989.86173198
7 0.01 0.35
-788489.14386937, -980976.12552935
-788398.07636365, -981152.32135565
-787996.19150142, -981178.05782466
-787689.33360168, -981284.96315747
-787338.92167747, -981235.46994783
-787338.92167747, -980978.10525773
-788489.14386937, -980976.12552935
8 0.05 0.4
-788427.77228943, -981092.92950409
-788574.27218995, -981086.99031893
-788867.27199098, -981431.46305798
-789025.65026181, -981633.39535329
```


Obr. 3-3: Vizualizace polygonů s jinou obecnou nejistotou *Polyg_obec.dat* ve zkušebním příkladu.

<u>Příprava</u>:

- Do pracovního adresáře se umístí soubor *MS Excelu Nejis*tota obec vrty.xlsm, jehož součástí je makro *Nejistota obec vrty*.
- Do stejného pracovního adresáře se umístí vstupní soubory *.*dat*, **.*xlsx* a pokud existuje, tak i *Polyg_obec.dat* (viz výše <u>Vstupy</u>:).
- Uložení 2D gridu Z povrchu (*Hor_5.grd*) do adresáře uvedeném v buňce M14 (viz obr. 3-4).

Zadaní parametrů a spuštění makra: Po otevření souboru *Nejis-tota_obec_vrty.xlsm* se zadají vstupní parametry a tlačítkem s červeným textem "**Spusť makro Nejistota_Obec_Vrty**" (obr. 3-4) se spustí výpočet.

	Α	B C D	E	F	G H	I J	К	L	М	N	0	
1	Ref and	ČESKÁ GEOLOGICKÁ SLUŽBA	Makro Nejis	tota	a_Obec_Vr	ty						
2	Provádí d	opočet nejistoty geomodelu o nejistotu ob	ecnou a snížení nejistoty v ok	olasti inf	ormačních bodů							
3								_				
4	Vstupy:	Textový soubor typu *.dat - výstup z makra	Geol_model_3D				Spust	makr	0			
5		(3D geomodel a nejistota na základě typi	i hornin a typů tektoniky)				ii	0	Materia			
6		**.xlsx - soubor vrtů použitých pro konstru	kci geomodelu			iveji	stota_	_Obec	_vrty			
7		Hor_1.grd - grid Z povrchu										
8		Polyg_obec.dat - polygony s jinou obecnou	u nejistotou pokud existují (viz řádky	15 a 17)							
9												
10	Výstup:	*_all.dat, ve kterém jsou dopočteny nejist	oty geomodelu ve struktuře:									
11		X Y Z Typ_horniny Nej_horniny(NH) Typ_te	ktoniky Nej_tektonika(NT) N	vej_obe	(NO) max(NH,NT,NO)	Sniženi_vrty_%(N	V_%) max	(NH,NT,NO)-max(NH,	NT,NV)*N	V_%*0.01	
12												
13	Parametr	y výpočtu:										
14	Grid Z pov	/rchu:			C:\čgs\Poddol	ovani\Mar_Radcic	e_model\	Horiz_Tekt\	Hor_5.grd			
15	Hodnota	obecné nejistoty základní na povrchu (Nejis	tota_obec_povrch):	0.05								
16	Hodnota	obecné nejistoty základní v max. hloubce (N	lejistota_obec_dole):	0.35								
17	Existují po	olygony s jinou obecnou nejistotou - soubo	Polyg_obec.dat (Ano/Ne):	Ano								
18	Maximáln	ní hloubka pro obecnou nejistotu (hloubka_	pro_nejistotu_obec_dole):	400 r	n							
19						Spuštěno	20.09.202	3, 9:23:15				
20						Ukončeno	: 20.09.20	23, 13:41:27				
21												
22	© Františ	ek Staněk, 2023										

Obr. 3-4: Zadání parametrů a spuštění makra Nejistota_Obec_Vrty.

Po spuštění makra je požadován výběr souboru vrtů *.*xlsx* použitých pro konstrukci geomodelu (obr. 3-5) a po jeho potvrzení je požadován výběr souboru 3D gridu geomodelu hodnot typů hornin, tektoniky a míry nejistoty typů hornin a tektoniky *.*dat* (obr. 3-6).

,					
→ ✓ ↑ 📙 « Mar_Radc	ice_model > M	R_nejistota ~	Ö		jistota
Jspořádat 🔻 Nová složka				*==- *	
Microsoft Excel	^	Název		Datum změny	Тур
0 Drive		3D_geol_model.xlsm		18.02.2022 14:03	List Mic
OneDrive		Brizonty_4_2_2022.xlsm		15.02.2022 18:56	List Mie
.🤜 Tento počítač		🕼 Nejistota_obec_vrty.xlsm		12.02.2022 0:23	List Mi
🧊 3D objekty		🛍 vrty_MR_nejistota.xlsx		09.02.2022 15:00	List Mi
Dokumenty		collars_neprofily.xlsx		04.02.2022 17:25	List Mi
👌 Hudba		collars_profily.xlsx		04.02.2022 16:53	List Mi
📰 Obrázky		Nejistota_vba.xlsm		03.01.2021 13:59	List Mi
Plocha		Rejistota_vrty_rezy_%_2_19.xlsm		13.02.2019 14:35	List Mi
棏 Stažené soubory					
📑 Videa					
🐛 Acer (C:)	~	<			
Název <u>s</u> ouboru	vrty_MR_nejist	ota.xlsx	~	Soubory Excelu (xls/xls	✓ (* x.*) (x.
		Nást	nie 🔻	OK	Zrušit

Obr. 3-5: Výběr souboru vrtů **. x/sx použitých pro konstrukci geomodelu.

→ → ↑ 📜 « Mar_Radcice_mo	del > Mi	R_nejistota	\sim	Ö	Prohledat: MR_ne	jistota
Jspořádat 🔻 Nová složka						. ?
Microsoft Excel	^	Název			Datum změny	Тур
		GM_3D_grid_22_2_22_all.dat			22.02.2022 18:28	Soubor
Oleblive		GM_3D_grid_22_2_22.dat			22.02.2022 17:48	Soubor
🍤 Tento počítač		GM_3D_grid_11_2_22_all.dat			11.02.2022 23:58	Soubo
🧊 3D objekty		GM_3D_grid_11_2_22.dat			11.02.2022 19:24	Soubo
Dokumenty		GM_3D_grid_1_nej_hor_4_2_	22_all	_9_2.dat	09.02.2022 19:14	Soubo
👌 Hudba		Polyg_obec.dat			09.02.2022 14:58	Soubo
Norázky		GM_3D_grid_1_nej_hor_4_2_	22.da	t	04.02.2022 14:29	Soubo
Plocha		GM_3D_grid_1_nej_hor_3_2_	22.da	t	03.02.2022 14:19	Soubo
Stažené soubory		GM_3D_grid_5_tekt.dat			01.02.2022 17:02	Soubo
📕 Videa						
🐛 Acer (C:)	~	<				
Název souboru: GM	3D arid 2	2 2 22.dat		~	Soubory *.dat - výstup	makra Gi 🗸

Obr. 3-6: Výběr souboru 3D gridu hodnot typů hornin, tektoniky a míry nejistoty typů hornin a tektoniky *.*dat*.

Při výpočtu se pro každý bod 3D gridu o souřadnicích X, Y, Z (řádku vstupního souboru 3D gridu hodnot typů hornin, tektoniky a míry nejistoty typů hornin a tektoniky *.*dat* - viz tabulka 2-11) stanovuje hodnota nejistoty obecné (stoupá lineárně směrem do hloubky od povrchu) na základě parametrů "*Hodnota obecné nejistoty na povrchu (Nejistota_obec_povrch)*", "*Hodnota obecné nejistoty v max. hloubce (Nejistota_obec_dole)*"a "*Maximální hloubka pro obecnou nejistotu (hloubka_pro_nejistotu_obec_dole)*" – viz obr. 3-4. V případě, že má parametr "*Existují polygony s jinou obecnou nejistotou - soubor Polyg_obec.dat (Ano/Ne)*" hodnotu "Ano", přebírají se hodnoty obecné nejistoty na povrchu a v max. hloubce

pro body gridu uvnitř zadaných polygonů ze souboru *Polyg_obec.dat* (viz tab. 3-1).

Při výpočtu se pro každý bod 3D gridu o souřadnicích *X*, *Y*, *Z* (řádku vstupního souboru 3D gridu hodnot typů hornin, tektoniky a míry nejistoty typů hornin a tektoniky *.*dat* - viz tabulka 2-11) stanovuje také snížení již výše vypočtené hodnoty nejistoty (zvýšení věrohodnosti) v okolí průzkumných vrtů použitých ke konstrukci geomodelu (viz obr. 3-2 a 3-5), pokud vrt prochází v okolí bodu 3D gridu stanovované nejistoty - % snížení nejistoty klesá lineárně v zadaném poloměru (hodnota vrtu ve sloupci "*Poloměr snížení nejistoty vrtu*", viz obr. 19) od polohy vrtu, kde je snížení nejistoty o hodnotu zadanou pro každý vrt ve sloupci "*% snížení nejistoty ve vrtu*" (viz obr. 3-2), směrem k obvodu zadané kružnice vlivu, kde je snížení nejistoty nulové. Vrt přitom musí dosáhnout vrstvu (viz sloupec "*Nejnižší vrstva*" ve vstupním souboru **.*xlsx*, viz obr. 3-2), ve které se nachází daný bod 3D gridu (například pokud vrt končí ve vrstvě 3, nebude vybírán pro snižování nejistoty ve vrstvě 2). Výpočet hodnoty % snížení nejistoty v okolí vrtu tak ovlivňují vstupní hodnoty zadané pro každý vrt ve vstupním souboru **.*xlsx* – viz obr. 3-2. Tato hodnota se pak také zapíše do výstupního textového souboru.

Výstupní textový soubor *_*all.dat* obsahuje údaje, které jsou překopírovány ze vstupního souboru *.*dat*:

- souřadnice X,
- souřadnice Y,
- souřadnice Z,
- typ hornin (1 podloží pod horizontem 1, 2 těžené uhlí mezi dělícími horizonty vrstev 1 a 2, 3 uhelná série mezi dělícími horizonty vrstev 2 a 3, 4 nadloží mezi dělícími horizonty vrstev 3 a 4, 5 kvartér mezi dělícími horizonty vrstev 4 a 5)
- nejistota způsobená typy hornin (viz 3.1.1),
- tektonika (hodnota +10 k typu horniny v polygonech výskytu tektonik ve vrstvách 2 a 3 viz 2.3), jinak typ hornin,
- nejistota způsobená tektonikou (viz 3.1.2).

Nově se přidávají tyto údaje:

- obecná nejistota (viz výše),
- % snížení hodnoty nejistoty v okolí průzkumných vrtů (viz výše),
- maximum všech nejistot (viz 3.2.2) snížené o součet % nejistot v okolí průzkumných vrtů, tedy výslednou nejistotu stanovenou principy fuzzy logiky.

Ukázka části výstupního souboru *GM_3D_grid_22_2_22_all.dat* je v tabulce 3-2. Tento soubor lze přímo načíst do prostředí programu *Voxler* (případně *Move*) pro provedení různých způsobů vizualizace strukturně geologického modelu a všech typů nejistot ve 3D (viz 2.4 a 3.3).

```
Tabulka 3-2: Ukázka obsahu souboru GM_3D_grid_22_2_22_all.dat.
```

```
X Y Z Typ_hor Nej_hor Typ_tekt Nej_tekt Nej_obec Sniz_vrt_proc Nej_max
-789000 -983500 99 1 0.41 1 0 0.18 0 0.41
-789000 -983500 100 1 0.43 1 0 0.17 0 0.43
-789000 -983500 101 1 0.41 1 0 0.17 0 0.41
-789000 -983500 102 2 0.36 2 0 0.17 0 0.36
-789000 -983500 103 2 0.28 2 0 0.17 0 0.28
-789000 -983500 104 2 0.15 2 0 0.17 0 0.17
-788315 -983110 -59 1 0.3 1 0 0.3 2.68 0.29
-788315 -983110 -58 1 0.4 1 0 0.3 2.68 0.39
-788315 -983110 -57 2 0.43 2 0 0.3 2.68 0.42
-788315 -983110 -56 2 0.36 2 0 0.3 2.68 0.35
-788315 -983110 -55 2 0.23 2 0 0.3 2.68 0.29
-788315 -983110 -54 2 0.12 2 0 0.29 2.68 0.29
-787930 -982980 -60 1 0 1 0 0.3 14 0.26
-787930 -982980 -59 1 0.17 1 0 0.3 14 0.26
-787930 -982980 -58 1 0.32 1 0 0.3 14 0.28
-787930 -982980 -57 1 0.42 1 0 0.3 14 0.36
-787930 -982980 -56 2 0.41 2 0 0.3 14 0.35
```

3.3 Vizualizace 3D modelu míry nejistoty strukturněgeologického modelu

Hodnoty 3D gridu strukturně geologického modelu a 3D modelu míry nejistoty strukturně-geologického modelu, vypočtené makrem *Geol_model_3D* a doplněné makrem *Nejistota_Obec_Vrty*, obsažené v souboru *GM_3D_grid_*_all.dat*, lze různým způsobem vizualizovat v prostředí programu *Voxler* firmy Golden Software. Situace po načtení souboru *GM_3D_grid_22_2_22_all.dat* do prostředí

Voxleru a po vytvoření objektů pro vizualizaci je na obr. 3-7. Vlevo je seznam všech vytvořených objektů, výběrem kterých se zvolí typ zobrazení a druh zobrazované veličiny. Vlastnosti souboru *GM_3D_grid_22_2_22_all.dat* jsou na obr. 3-8. Dále jsou uvedeny příklady některých možných způsobů zobrazení 3D modelu míry nejistoty strukturně-geologického modelu (vizualizace 3D strukturně geologického modelu už byly popsány v části 2.4).

Přímo ze vstupního souboru (*GM_3D_grid_22_2_22_all.dat*) se dají provádět vizualizace s pomocí grafického výstupu *ScatterPlot* (obr. 3-7):

- nejistoty hranic horninových těles (ScatterPlot NejHor),
- nejistoty průběhů zlomů (ScatterPlot NejTekt),
- nejistoty obecné (ScatterPlot_Obec),
- % snížení nejistoty v okolí vrtů (*ScatterPlot_%Vrt*),
- nejistoty celkové (*ScatterPlot_Max*).

Vizualizace s pomocí grafických výstupů *FaceRender*, *VolRender*, *OrthoImage* a *Isosurface* vyžadují nejprve vytvoření interních 3D gridů *Voxleru* s pomocí *Grid*-*der* (objekt *Gridder GM* pro geologický model, objekt *Gridder NejHor* pro nejistoty hranic horninových těles a objekt *Gridder_Max* pro celkovou nejistotu - viz obr. 3-7). Nastavení vlatností těchto tří interních 3D gridů je stejné, pro interní grid typů hornin *Gridder GM* už bylo nastavení vlastností vyobrazeno v části 2.4 na obr. 2-8.

Obr. 3-7: Vizualizace geomodelu a jeho nejistoty geomodelu v prostředí Voxler (vstupní soubor *GM_3D_grid_11_2_22_all.dat*).

General		
GM_3D_grid_22	2_22_all.dat (id:2)	
File path	D:\Prac\čgs\Mar_Radcice_model\MR_nejistota\GM_3D_grid_22_2_22_all.da	at
Worksheet	Edit Worksheet	
Output		
Output type	Points	
Worksheet Colu	nns	
X coordinates	Column A: X	
Y coordinates	Column B: Y	
Z coordinates	Column C: Z	
Components		
Component of	Jumns 7	
Component-	Column D: Typ_hor	
Component-7	Column E: Nej_hor	
Component-3	Column F: Typ_tekt	
Component-	Column G: Nej_tekt	
Component-	Column H: Nej_obec	
Component-	Column I: Sniz_vrt_proc	
Component-	Column J: Nej_max	
Labels		_
Worksheet Row		
Header row	1	
Load all rows		
First row	2	
Last row	6340680	

Obr. 3-8: Vlastnosti souboru GM_3D_grid_11_2_22_all.dat.

Vizualizace různých typů nejistoty s pomocí grafického výstupu *ScatterPlot* přímo ze vstupního souboru (*GM_3D_grid_11_2_22_all.dat*):

- Na obr. 3-9 je zobrazení nejistoty typů hornin (viz 3.1.1 a 3.1.3) a na obr.
 3-10 řez -800 m od středu tělesa ve směru osy X s pomocí grafického výstupu *ClipPlane*.
- Na obr. 3-11 je zobrazení nejistoty tektoniky (viz 3.1.2 a 3.1.3).
- Na obr. 3-12 je zobrazení obecné nejistoty (viz 3.2.1).
- Na obr. 3-13 je zobrazení % snížení nejistoty v okolí informačních bodů
 vrtů (viz 3.2.1 a 3.2.3).
- Na obr. 3-14 je zobrazení celkové nejistoty (viz 3.2.2 a 3.2.3) a na obr.
 3-15 zobrazení celkové nejistoty řez -300 m od středu tělesa ve směru osy X s pomocí grafického výstupu *ClipPlane*.

Obr. 3-9: Vizualizace nejistoty typů hornin.

Obr. 3-10: Vizualizace nejistoty typů hornin v řezu -800 m od středu tělesa ve směru osy *X* s pomocí grafického výstupu *ClipPlane*.

Obr. 3-11: Vizualizace nejistoty tektoniky.

Obr. 3-12: Vizualizace obecné nejistoty.

Obr. 3-13: Vizualizace % snížení nejistoty v okolí informačních bodů – vrtů.

Obr. 3-14: Vizualizace celkové nejistoty strukturně geologického modelu.

Obr. 3-15: Vizualizace celkové nejistoty strukturně geologického modelu - řez -300 m od středu tělesa ve směru osy *X* s pomocí grafického výstupu *ClipPlane*.

Dále jsou zobrazeny ukázky vizualizace celkové nejistoty s pomocí *FaceRender* (obr. 3-16), *VolRender* (obr. 3-17) a řezu 700 m od středu tělesa ve směru osy X s pomocí grafického výstupu *ClipPlane* (obr. 3-18), *OrthoImage_XY*, *Ortho-Image_XZ* a *OrthoImage_YZ* (obr. 3-19), *Isosurface* (obr. 3-20) - obálky s mezní hodnotou nejistoty 0.35 a řez této obálky středem tělesa ve směru osy X s pomocí grafického výstupu *ClipPlane* (obr. 3-21).

Obr. 3-16: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí *FaceRender*.

Obr. 3-17: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí *VolRender*.

Obr. 3-18: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí *VolRender* - řez 700 m od středu tělesa ve směru osy *X* s pomocí grafického výstupu *ClipPlane*.

Obr. 3-19: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí Ortholmage_XY, Ortholmage_XZ a Ortholmage_YZ.

Obr. 3-20: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí *Isosurface* - obálka s mezní hodnotou nejistoty 0.35.

Obr. 3-21: Vizualizace celkové nejistoty strukturně geologického modelu s pomocí *Isosurface*, obálka s mezní hodnotou nejistoty 0.35 - řez středem tělesa ve směru osy *X* s pomocí grafického výstupu *ClipPlane*.

4.Závěr

Software GM_MN_SED byl vytvořen s pomocí nových algoritmů založených na nových technikách pro tvorbu a vizualizaci 3D strukturně-geologického modelu (včetně tektoniky) a 3D modelu míry nejistoty strukturně-geologického modelu. Umožňuje provádět variantní výpočty strukturně geologického modelu a 3D modelu míry nejistoty strukturně-geologického modelu při změně vstupních parametrů modelování. Lze jej aplikovat na všechna ložiska typu Mariánské Radčice a ložisek podobných typů. Na pracovištích ČGS bude sloužit jako součást knowhow pro výkon státní geologické služby.

Poděkování

Software byl připraven za podpory projektu TA ČR SS02030023 - Horninové prostředí a nerostné suroviny.

Literatura

- BRUS, J. Vizualizace nejistoty v environmentálních studiích. UP v Olomouci, 2014, 175 s.
- [2] JENNESS, J., BROST, B., BEJER, P. Land Facet Corridor Designer: Extension for ArcGIS. Jenness Enterprises, 2011.
- [3] SHANNON, C. E., WEAVER, W. The mathematical theory of communication. Urbana: University of Illinois Press, 1949.
- [4] Vondrák, I. Umělá inteligence a neuronové sítě, VŠB-TU Ostrava, 2009, 139
 s.
- [5] WELLMANN, J. F., REGENAUER-LIEB, K. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models. Tectonophysics, 2012, 526, 207-216.
- [6] "Horninové prostředí a nerostné suroviny" Internet: https://rens.geology.cz/cs, [Sep. 26, 2023].
- [7] "Surfer Explore the depths of your data." Internet: http://www.goldensoftware.com/products/surfer/features, [Sep. 26, 2023].
- [8] "Voxler Power forward into 3D visualization." Internet: http://www.goldensoftware.com/products/voxler/features, [Sep. 26, 2023].
- [9] "PETROLEUM ENGINEERING AND STRUCTURAL GEOLOGY SOFT-WARE." Internet: https://www.petex.com/products/move-suite/move/, [Sep. 26, 2023].